Analysis and data processing systems

ANALYSIS AND DATA PROCESSING SYSTEMS

Print ISSN: 2782-2001          Online ISSN: 2782-215X
English | Русский

Recent issue
№1(97) January - March 2025

Improvement of electric energy quality by regulating valve generators

Issue No 4 (77) October - December 2019
Authors:

Nikolaev Mikhail Yu.,
Makarov Vladimir V.,
Kropotin Vladimir O.,
Gritsay Alexander S.,
Gaak Anton V.
DOI: http://dx.doi.org/10.17212/1814-1196-2019-4-161-176
Abstract

The relevance of the research is due to the ongoing technological revolution related to the digitization of the surrounding world. The use of numerous sensors in electrical systems leads to increased requirements for the quality of electricity in the electrical network. An increase in the number of analyzed data leads to a fundamentally new development of the electric power complex; predictive analytics increases the uptime of equipment, contributes to the growth of resource-saving technologies and minimizes voltage losses in the power supply networks of gas compressor units, as well as greatly reduces the cost of their maintenance. One of the ways to improve the quality and stabilize voltage in electrical networks is to use valve generators as an element of the “Smart Grid”.



The purpose of the research is to reduce the limits of voltage tolerance by stabilizing the output voltage using a circuit solution based on valve generators. The object of the research is compressor workshops, gas pumping units, valve generators and a set of voltage-stabilizing equipment.



The object of research is valve generators of gas pumping units installed in compressor workshops which serve to reduce the pressure of gas pumped through the main gas pipelines.



Research methods are based on an assessment of the effectiveness of technological solutions, including a systems analysis of the results of voltage stabilization of valve generators.



As a result of the research, a voltage stabilization scheme in networks using valve generators was developed, which allows achieving minimum voltage losses and frequency deviations, regardless of the type of load. The scheme has been successfully implemented in the compressor shop of the operating enterprise. The resulting scheme is recommended for application in the developed system “Smart Grid”.


Keywords: gas pumping unit, compressors, generators, voltage stabilization, operation regulation, smart grid, microgrid, voltage, energy system

References

1. GOST 32144–2013. Normy kachestva elektricheskoi energii v sistemakh elektrosnabzheniya obshchego naznachenii [Power quality limits in the public power supply systems]. Moscow, Standartinform Publ., 2014. 16 p.



2. Klimenko A.V., Agababov B.C., Borisova P.N., Petin S.N. Termodinamicheskaya effektivnost' ispol'zovaniya detander-generatornykh agregatov na stantsiyakh tekhnologicheskogo umen'sheniya davleniya transportiruemogo prirodnogo gaza [Thermodynamic efficiency of expander-generator units at the plants for technological decompression of transported natural gas]. Teplofizika i aeromekhanika – Thermophysics and Aeromechanics, 2017, vol. 24, no. 6, pp. 961–968. (In Russian).



3. Kramskoy A.A., Filippov A.V. Poputnyi gaz poslednikh stupenei separatsii. Komprimirovanie nizkonapornogo PNG [Associated gas of last separation stages. Compression of low-pressure associated oil gas]. Territoriya Neftegaz – Oil and Gas Territory, 2016, no. 3, pp. 78–83.



4. Makarov V.V., Kuznetsova O.P., Nikolaev M.Yu. The effect of electric exposure on the gas cleaning systems filter efficiency. IOP Conference Series: Materials Science and Engineering 12, 2017, vol. 168, no. 12, pp. 1–6. DOI: 10.1088/1757-899X/168/1/012005.



5. Zabudskiy E.I., Balandina G.I. Automatic control system for power grid voltage stabilization. Procedia Computer Science, 2017, vol. 103, pp. 511–516.



6. Padalko D.A. Stabilizatsiya parametrov napryazheniya asinkhronnogo generatora, vozbuzhdaemogo invertorom napryazheniya [Stabilization of voltage parameters of induction generator excited by a voltage inverter]. Problemy regional'noi energetikiProblems of the Regional Energetics, 2017, no. 3 (35), pp. 9–16.



7. Kolesnikov K.A. Metody povysheniya kachestva stabilizatsii v stabilizatorakh napryazheniya v tsepi postoyannogo toka [Method for improving the quality of stabilization in voltage stabilizers in a DC circuit]. Molodezh': nauka i tvorchestvo [Science and creativity], Stavropol', 2017, pp. 316–319.



8. Liu C., Ma X., Zhou M., Wu J., Long C. An event-trigger two-stage architecture for voltage control in distribution systems. International Journal of Electrical Power and Energy Systems, 2018, vol. 95, pp. 577–584.



9. Lucas A., Chondrogiannis S. Smart grid energy storage controller for frequency regulation and peak shaving, using a vanadium redox flow battery. International Journal of Electrical Power and Energy Systems, 2016, vol. 80, pp. 26–36.



10. Jamroen C., Namproom P., Dechanupaprittha S. TS-Fuzzy based adaptive PEVs charging control for smart grid frequency stabilization under islanding condition. Procedia Computer Science, 2016, vol. 86, pp. 124–127.



11. Wahab N.A., Salleh M.K.M., Othman N., Khalid M.F.A., Hidayat N.M. High efficiency CMOS rectifier for energy harvesting. 2016 IEEE Industrial Electronics and Applications Conference (IEACon), Kota Kinabalu, Malaysia, 2016, pp. 123–127. DOI: 10.1109/IEACON.2016.8067367.



12. Krasnov O., Liubarskyi B., Bozhko V., Petrenko O., Dubinina O., Nuriiev R. Analiz rezhimov raboty odnofaznogo aktivnogo vypryamitelya toka s shirotno-impul'snoi modulyatsiei po pryamougol'no-stupenchatomu zakonu [Аnalysis of operating modes of single­phase current­source rectifier with rectangular­stepped pulse­width modulation]. Vostochno-evropeiskii zhurnal peredovykh tekhnologii – Eastern-European Journal of Enterprise Technologies, 2018, vol. 3, no. 9 (93), pp. 50–57.



13. Shcherbakov A.V., Stal'kov P.M. Razrabotka vysokovol'tnogo stenda dlya impul'snykh ispytanii energoemkikh rezistorov [Development of a high-voltage bench for impulse tests of high-energy resistors]. Vestnik MEI – MPEI Vestnik, 2017, no. 2, pp. 88–95.



14. Brovanov S.V, Kharitonov S.A. Staticheskie preobrazovateli elektricheskoi energii na osnove mnogourovnevykh invertorov napryazheniya i vypryamitelei s korrektorami vkhodnogo toka [Static electric energy converters based on multilevel voltage inverters and rectifiers with input current correctors]. Nauchnyi vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universitetaScience bulletin of the Novosibirsk state technical university, 2004, no. 2 (17), pp. 119–130.



15. Nidhal A., Dhia C., Lassad S.. Modelling of conducted EMI generated by a three-phase PWM rectifier. 2017 International Conference on Green Energy Conversion Systems (GECS), Hammamet, Tunisia, 2017, pp. 1–4. DOI: 10.1109/GECS.2017.8066163.



16. Tkachuk R.Yu., Glazyrin A.S. Printsip postroeniya otkazoustoichivoi sistemy upravleniya asinkhronnym privodom [The method of building a fault-tolerant asynchronous drive control system]. Izvestiya Tomskogo politekhnicheskogo universiteta – Bulletin of the Tomsk Polytechnic University, 2012, vol. 321, no. 5, pp. 105–109.



17. Gorbunov R.L., Poskonny G.I. Issledovanie trekhfaznogo shirotno-impul'snogo preobrazovatelya peremennogo napryazheniya dlya povysheniya energoeffektivnosti asinkhronnykh dvigatelei [Investigation of three-phase AC voltage converter, used for increasing energy efficiency of induction motors]. Izvestiya Tomskogo politekhnicheskogo universiteta – Bulletin of the Tomsk Polytechnic University, 2014, vol. 324, no. 4, pp. 76–86.



18. Maklakov A.S. Gibridnyi algoritm modulyatsii na osnove prostranstvenno-vektornoi ShIM i ShIM s udaleniem vydelennykh garmonik [Hybrid modulation based on SHEPWM and SVPWM]. Vestnik YuUrGU. Seriya: Energetika – Bulletin of South Ural State University. Series: Power Engineering, 2018, vol. 18, no. 1, pp. 92–100.



19. Nikolayev M.U., Nikolayeva E.V., Lyashkov A.A. Data measuring channels calibration procedure. 2016 IEEE Dynamics of Systems, Mechanisms and Machines (Dynamics), Omsk, 2016, pp. 1–4. DOI: 10.1109/Dynamics.2016.7819052.



20. Pustovetov M.Yu. Opyt razrabotki sinus-fil'tra dlya silovoi skhemy chastotno-reguliruemogo asinkhronnogo privoda [Experience in developing sine-wave filter for power circuit of VVVF-drive with induction motor]. Izvestiya Tomskogo politekhnicheskogo universiteta – Bulletin of the Tomsk Polytechnic University, 2014, vol. 324, no. 4, pp. 87–95.



21. Bakhovtsev I.A. Integral'nye kharakteristiki vkhodnogo toka dvukhurovnevykh invertorov napryazheniya s ShIM [Input current integral characteristics of two-level voltage source inverters with PWM]. Nauchnyi vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universitetaScience bulletin of the Novosibirsk state technical university, 2010, no. 1 (38), pp. 111–118.



22. Gerasimov V.A. [FPGA-based implementation of high resolution, high carrier frequency pulse-width modulator]. Prom-Inzhiniring: trudy III mezhdunarodnoi nauchno-tekhnicheskoi konferentsii [The 3rd International Conference on Industrial Engineering 2017]. Chelyabinsk, 2017, pp. 302–307. (In Russian).



23. Li X., Ruan X., Jin Q., Sha M., Tse C.K. Approximate discrete-time modeling of DC-DC converters with consideration of the effects of pulse-width modulation. IEEE Transactions on Power Electronics, 2018, vol. 33, no. 8, pp. 7071–7082. DOI: 10.1109/TPEL.2017.2752419.



24. Tuballа M.L., Abundo M.L. A review of the development of Smart Grid technologie. Renewable and Sustainable Energy Reviews, 2016, vol. 59, pp. 710–725.



25. Potapov V.I., Gritsay A.S., Tyunkov D.A., Sinitsin G.E. Ispol'zovanie neironnoi seti dlya postroeniya kratkosrochnogo prognoza elektropotrebleniya OOO "Omskaya energosbytovaya kompaniya" [Using neural network for building short term forecast of electricity load of LLC Omsk energy retail company]. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursovBulletin of the Tomsk Polytechnic University, Geo Assets Engineering, 2016, vol. 327, no, 8, pp. 44–51.



26. Ponce-Jara M.A., Ruiz E., Gil R., Sancristóbal E., Pérez-Molina C., Castro M. Smart Grid: assessment of the past and present in developed and developing countries. Energy Strategy Reviews, 2017, vol. 18, pp. 38–52.



27. Klimov P.L., Razumets E.A. [Smart network management]. Fundamental'nye i prikladnye nauchnye issledovaniya: aktual'nye voprosy, dostizheniya i innovatsii: sbornik statei 16 mezhdunarodnoi nauchno-prakticheskoi konferentsii [Fundamental and applied research: current issues, developments and innovations], Penza, 2018, pt. 1, pp. 81–83. (In Russian).



28. Tsvetkov V.A. Smart Grid – Umnaya elektricheskaya set' [Smart Grid]. Science Time, 2017, vol. 40, no. 4, pp. 218–220. (In Russian).



29. Pshenichnikov S.O. [Smart grid systems to solve the problems of modern energy]. Povyshenie effektivnosti proizvodstva i ispol'zovaniya energii v usloviyakh Sibiri: materialy Vserossiiskoi nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem [Materials of All-Russia scientific and practical conference with international participation "Improving the efficiency of production and use of energy in Siberia"], Irkutsk, 2017, vol. 2, pp. 315–321. (In Russian).



30. Manusov V.Z., Khasanzoda N., Ahyoev J.S. Sozdanie integrirovannoi sistemy elektrosnabzheniya ostrova Russkii i upravlenie ee rezhimami [Creation of an integrated system of power supply for the Russian Island and management of its regimes]. Nauchnye problemy transporta Sibiri i Dal'nego Vostoka – Scientific problems of transport in Siberia and the Far East, 2017, no. 1–2, pp. 142–145.

For citation:

Nikolaev M.Yu., Makarov V.V., Kropotin V.O., Gritsay A.S., Gaak A.V. Povyshenie kachestva elektroenergii putem regulirovaniya ventil'nykh generatorov [Improvement of electric energy quality by regulating valve generators]. Nauchnyi vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universitetaScience bulletin of the Novosibirsk state technical university, 2019, no. 4 (77), pp. 161–176. DOI: 10.17212/1814-1196-2019-4-161-176.

Views: 1988