At the present stage of air transport development the density of the flow of aircraft increases, especially near airports, where the flux density is high. These factors make it necessary to place high requirements to information and measurement systems in terms of speed and accuracy of determining the coordinates of the aircraft.
The need to increase the capacity of airports at a given high level of security is one of the main tasks of radio engineering, which directly affects the safety of life and health of passengers.
The modernization of ground-based radar stations and aircraft onboard equipment, as well as the developed technologies for transmitting data from the aircraft to information measurement systems, makes it possible to synthesize a model describing the change in the aircraft azimuth acceleration in information measurement systems using full data on the kinematics and dynamics of the aircraft movement. Using discrete-address systems for transmitting information from the aircraft, the developed channels provide information that complements radar measurements, creating a full volume of data on the kinematics and dynamics of the aircraft.
The paper considers a step-by-step synthesis of the model of changing the azimuth of an aircraft, taking into account its overload. The resulting expression will allow the development of mathematical models of aircraft movement that more accurately describe its movement in space. Algorithms for secondary processing of information based on the obtained expression will improve the accuracy of determining the angular coordinates of the aircraft by information and measurement systems. This fact is confirmed by the conducted research, the result of which is presented in this paper.
1. Naimov U.R., Danilov S.N. Algoritm funktsionirovaniya informatsionno-izmeritel'noi sistemy otsenki koordinat bespilotnykh letatel'nykh apparatov [An algorithm for information-measuring system functioning to assess coordinates of unmanned aerial vehicles]. Nauchnyi vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta = Science bulletin of the Novosibirsk state technical university, 2019, no. 4 (77), pp. 121–134. DOI: 10.17212/1814-1196-2019-4-121-134.
2. Pudovkin A.P., Danilov S.N., Panasyuk Yu.N. Perspektivnye metody obrabotki informatsii v radiotekhnicheskikh sistemakh [Perspective methods of information processing in radio engineering systems]. St. Peterburg, Ekspertnye resheniya Publ., 2014. 256 p.
3. Ivanov A.V. Tochnostnye kharakteristiki navigatsionnykh kompleksov, ispol'zuyushchikh kontrol' tselostnosti sputnikovykh radionavigatsionnykh sistem dlya rekonfiguratsii [Accuracy characteristics of navigation systems using integrity control of satellite radio navigation systems for reconfiguration]. Vestnik Tambovskogo gosudarstvennogo tekhnicheskogo universiteta = Transactions of the Tambov State Technical University, 2015, no. 4, pp. 572–577. DOI: 10.17277/vestnik.2015.04.pp.572-577.
4. Glistin V.N., Panasyuk Yu.N. [Research of algorithms of the goniometric channel with casual structure at trajectory processing aircrafts]. Fundamental'nye i prikladnye nauchnye issledovaniya: aktual'nye voprosy, dostizheniya i innovatsii: Vserossiiskaya zaochnaya nauchno-prakticheskaya konferentsiya [All-Russian correspondence scientific and practical conference "Fundamental and applied research: current issues, achievements and innovations". Tambov, 2017, iss. 1, pp. 180–182. (In Russian).
5. Kolokolova K.V., Gaiduk A.R. Sintez sistem avtomaticheskogo upravleniya neustoichivymi mnogomernymi ob"ektami [Synthesis of control systems by unstable multivariable plants]. Nauchnyi vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta = Science bulletin of the Novosibirsk state technical university, 2017, no. 1 (66), pp. 26–40.
6. Glistin V.N., Panasyuk Yu.N., Pudovkin A.P. Model' dal'nomernogo kanala avtomaticheskoi sistemy upravleniya vozdushnym dvizheniem v rezhime posadki [Model of rangefinder channel of automatic air traffic control system in landing mode]. Voprosy sovremennoi nauki i praktiki. Universitet im. V. I. Vernadskogo = Problems of Contemporary Science and Practice. Vernadsky University, 2014, no. 52, pp. 27–31.
7. Glistin V.N., Panasyuk Yu.N. Primenenie dinamicheskikh dannykh vozdushnogo sudna v uglomernom kanale informatsionno-izmeritel'nykh sistem [Application of dynamic aircraft data in the angular channel of information and measurement systems]. Vestnik Tambovskogo gosudarstvennogo tekhnicheskogo universiteta = Transactions of the Tambov State Technical University, 2019, no. 2. pp. 190–196. DOI: 10.17277/vestnik.2019.02.pp.190-196.
8. Haykin S. Kalman filtering and neural networks. New York, Wiley, 2001, pp. 3–20. DOI: 10.1002/0471221546.
9. Glistin V.N., [Calculation of kinematic and dynamic characteristics of the aircraft relative to the radar station]. Sovremennoe sostoyanie i perspektivy razvitiya sistem svyazi i radiotekhnicheskogo obespecheniya v upravlenii aviatsiei: sbornik nauchnykh statei po materialam VI Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii, posvyashchennoi dnyu obrazovaniya voisk svyazi [Collection of scientific articles based on the materials of the VI International scientific and technical conference dedicated to the day of formation of communication troops "Current state and prospects of development of communication systems and radio engineering support in aviation management"]. Voronezh, 2017, pp. 62–65. (In Russian).
10. Gil'kina S.L., Grishukov A.A. Informatsionnaya model' seti ATN s realizatsiei funktsii sistemy CNS/ATM [ATN network information model with a CNS/ATM system function]. Elektrosvyaz'= Telecommunications, 2008, no. 5, pp. 35–37.
11. Anodina T.G., Mokshanov V.I. Modelirovanie protsessov v sisteme upravleniya vozdushnym dvizheniem [Modeling of processes in the air traffic control system]. Moscow, Radio i svyaz' Publ., 1993. 263 p.
12. GOST 20058–80. Dinamika letatel'nykh apparatov v atmosfere [State Standard 20058-80. Dynamics of aircraft in the atmosphere]. Moscow, Standartinform Publ., 1981. 51 p.
13. Lobachev Yu.V., Panasyuk Yu.N., Komyagin B.P. Obrabotka radiolokatsionnoi informatsii v avtomatizirovannykh sistemakh upravleniya poletami [Radar information processing in automated flight control systems]. Tambov, 2008. 152 p.
14. Perevezentsev V.P., Agarkov A.I. Radiolokatsionnye sistemy aeroportov [Airport radar systems]. Moscow, Transport Publ., 1991. 360 p.
15. Targ S.M. Kratkii kurs teoreticheskoi mekhaniki [Short course of theoretical mechanics]. 10th ed., revised and expanded. Moscow, Vysshaya shkola Publ., 1986. 416 p.
16. Glistin V.N, Pudovkin A.P., Belyaev M.P., Panasyuk Yu.N., Varepo L.G., Danilov S.N., Belyaev P.S. The theta-theta channel functioning algorithm synthesis of the data measuring system for the maneuvering aircraft with consideration to its dynamic and kinematic characteristics. Journal of Physics: Conference Series, 2020, vol. 1441: XIII International scientific and technical conference "Dynamics of Systems, Mechanisms and Machines", Omsk, 2019, pp. 1–6. DOI: 10.1088/1742-6596/1441/1/012059.
Glistin V.N. Model' izmereniya azimuta vozdushnogo sudna v informatsionno izmeritel'noi sisteme [A model for measuring the aircraft azimuth in the information measurement system]. Nauchnyi vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta = Science bulletin of the Novosibirsk state technical university, 2020, no. 1 (78), pp. 135–146. DOI: 10.17212/1814-1196-2020-1-135-146.