В рамках настоящей статьи рассматривается алгоритм выбора структуры нейронной сети, используемой для регулирования объекта «перевернутый маятник на тележке» с учетом его дополнительных особенностей математического описания, а именно нелинейных параметров.
Работа алгоритма иллюстрируется на примере синтеза системы автоматического управления, включающей два нейрорегулятора. Один из них отвечает за вывод тележки в заданное положение, а второй – за удержание перевернутого маятника в вертикальном положении. Преобразования структуры будем осуществлять для регулятора, отвечающего за вывод тележки в заданное положение.
За основу берется архитектура нейросетевого регулятора, полученного из дискретного регулятора, синтезированного с использованием полиномиального матричного разложения.
Для исходного регулятора определим границы его возможного управления нелинейной системой. С целью увеличения диапазона управления нелинейным объектом выполним преобразования структуры нейросети исходного регулятора. Проведем некоторые усложнения структуры нейронной сети регулятора, а именно: увеличим количество нейронов и заменим некоторые функции активации на нелинейные (гиперболический тангенс). Далее предлагается один из способов выбора начальных значений весовых коэффициентов. Затем обучаем нейросеть и проверяем работоспособность полученного регулятора на нелинейном объекте. На следующем этапе сравниваются показатели качества регулирования (быстродействие, астатизм, перерегулирование) полученного регулятора с усложненной структурой нейросети и исходного регулятора.
Таким образом, целью настоящего исследования является формализация процедуры синтеза нейросетевого регулятора для управления нелинейным объектом по рассчитанному с использованием полиноминального матричного разложения регулятору для линеаризованной модели объекта.
Представляемый способ генерации архитектуры нейронной сети управляющих регуляторов дает возможность увеличить диапазон регулирования нелинейным объектом по сравнению с регулятором, полученным методом полиномиального матричного разложения для линейного объекта. Предлагаемая структура нейронной сети не избыточна и поэтому не требует дополнительных вычислительных ресурсов для ее настройки.
1. Artificial neural network classification of motor-related EEG: an increase in classification accuracy by reducing signal complexity / V.A. Maksimenko, S.A. Kurkin, E.N. Pitsik, V.Y. Musatov, A.E. Runnova, T.Y. Efremova, A.E. Hramov, A.N. Pisarchik // Complexity. – 2018. – Vol. 2018. – Art. 9385947. – P. 1–10.
2. Yang X.C., Yung M.H., Wang X. Neural-network-designed pulse sequences for robust control of singlet-triplet qubits // Physical Review A. – 2018. – Vol. 97. – P. 042324.
3. Eggensperger K., Lindauer M., Hutter F. Neural networks for predicting algorithm runtime distributions // Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18). – Stockholm, Sweden, 2018. – P. 1442–1448.
4. Golnaraghi F., Kuo B.C. Automatic control systems. –10th ed. – New York: McGraw-Hill, 2017. – 1160 p.
5. Isidori A. Lectures in feedback design for multivariable systems. – Switzerland: Springer, 2016. – 414 p. – (Advanced Textbooks in Control and Signal Processing).
6. Воевода А.А., Бобобеков К.М., Шипагин В.И. Синтез одноканальных регуляторов с использованием факторизации передаточной функции объекта // Сборник научных трудов НГТУ. – 2019. – № 2 (95). – С. 7–17. – DOI: 10.17212/2307-6879-2019-2-7-17.
7. Lopez-Martin M., Carro B., Sanchez-Esguevillas A. Neural network architecture based on gradient boosting for IoT traffic prediction // Future Generation Computer Systems. – 2019. – Vol. 100. – P. 656–673.
8. Silva A.J. da, Oliveira W.R. de, Ludermir T.B. Weightless neural network parameters and architecture selection in a quantum computer // Neurocomputing. – 2016. – Vol. 183. – P. 13–22.
9. Zoph B., Le Q. Neural architecture search with reinforcement learning // arXiv preprint. – arXiv:1611.01578, 2016.
10. Elsken T., Metzen J., Hutter F. Neural architecture search: a survey // arXiv preprint. – arXiv:1808.05377, 2018.
11. Pascanu R., Mikolov T., Bengio Y. On the difficulty of training Recurrent Neural Networks // arXiv preprint. – arXiv:1211.5063 [cs. LG].
12. Arjovsky M., Shah A., Bengio Y. Unitary evolution Recurrent Neural Networks // arXiv preprint. – arXiv:1511.06464.
13. Воевода А.А., Шоба Е.В. О модели перевернутого маятника // Сборник научных трудов НГТУ. – 2012. – № 1 (67). – С. 3–14.
14. Воевода А.А., Шоба Е.В. Управление перевернутым маятником // Сборник научных трудов НГТУ. – 2012. – № 2 (68). – С. 3–14.
15. Шипагин В.И. Нейросетевая реализация регулятора для устойчивого объекта Сборник научных трудов НГТУ. – 2019. – № 3–4 (96). – С. 53–63. – DOI: 10.17212/2307-6879-2019-3-4-53-63.
Воевода А.А., Шипагин В.И. Синтез нейросетевого регулятора управления нелинейной моделью перевернутого маятника на тележке // Научный вестник НГТУ. – 2020. – № 2–3 (79). – С. 25–36. – DOI: 10.17212/1814-1196-2020-2-3-25-36.
Voevoda A.A., Shipagin V.I. Sintez neirosetevogo regulyatora upravleniya nelineinoi model'yu perevernutogo mayatnika na telezhke [Synthesis of a neural network control regulator of a nonlinear model of an inverted pendulum on a cart]. Nauchnyi vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta = Science bulletin of the Novosibirsk state technical university, 2020, no. 2–3 (79), pp. 25–36. DOI: 10.17212/1814-1196-2020-2-3-25-36.