Список литературы
1. Bochkovskiy A., Wang C.-Y., Liao H.-Y.M. YOLOv4: Optimal speed and accuracy of object detection. – arXiv preprint arXiv:2004.10934 [cs, eess]. – 2020.
2. Microsoft COCO: common objects in context / T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan, C.L. Zitnick, P. Dollár. – arXiv preprint arXiv:1405.0312 [cs]. – 2015.
3. Tan M., Pang R., Le Q.V. EfficientDet: scalable and efficient object detection. – arXiv preprint arXiv:1911.09070 [cs, eess]. – 2020.
4. Focal loss for dense object detection / T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár. – arXiv preprint arXiv:1708.02002 [cs]. – 2018.
5. Mask R-CNN / K. He, G. Gkioxari, P. Dollár, R. Girshick. – arXiv preprint arXiv:1703.06870 [cs]. – 2018.
6. Makarychev K., Reddy A., Shan L. Improved guarantees for k-means++ and k-means++ parallel. – arXiv preprint arXiv:2010.14487 [cs]. – 2020.
7. tf.keras.layers.Concatenate // TensorFlow Core v2.7.0. – URL: https://www.tensorflow.org/api_docs/python/tf/keras/layers/Concatenate?hl=ru (accessed: 29.11.2021).
8. Image segmentation with Monte Carlo Dropout UNET and Keras // 42: A blog on A.I. – 2019. – 30 October. – URL: https://nchlis.github.io/2019_10_30/page.html (accessed: 29.11.2021).
9. Ronneberger O., Fischer P., Brox T. U-Net: convolutional networks for biomedical image segmentation. – arXiv preprint arXiv:1505.04597 [cs]. – 2015.
10. Tan M., Le Q.V. EfficientNet: rethinking model scaling for convolutional neural networks. – arXiv preprint arXiv:1905.11946 [cs, stat]. – 2020.
11. tf.keras.layers.Conv2D | TensorFlow Core v2.7.0. – URL: https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D (accessed: 29.11.2021).
12. tf.keras.layers.BatchNormalization | TensorFlow Core v2.7.0. – URL: https://www.tensorflow.org/api_docs/python/tf/keras/layers/BatchNormalization?hl=ru (accessed: 29.11.2021).
13. tf.keras.activations.relu | TensorFlow Core v2.7.0. – URL: https://www.tensorflow.org/api_docs/python/tf/keras/activations/relu?hl=ru (accessed: 29.11.20211).
14. tf.keras.layers.UpSampling2D | TensorFlow Core v2.7.0. – URL: https://www.tensorflow.org/api_docs/python/tf/keras/layers/UpSampling2D?hl=ru (accessed: 29.11.2021).
15. Deep Residual Learning for Image Recognition / K. He, X. Zhang, Sh.Ren, J. Sun. – arXiv preprint arXiv:1512.03385 [cs]. – 2015.
16. Densely connected convolutional networks / G. Huang, Z. Liu, Maaten L. van der, K.Q. Weinberger . – arXiv preprint arXiv:1608.06993 [cs]. – 2018.
17. MnasNet: platform-aware neural architecture search for mobile / M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, Q.V. Le. – arXiv preprint arXiv:1807.11626 [cs]. – 2019.
18. MobileNetV2: inverted residuals and linear bottlenecks / M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L. Chen. – arXiv preprint arXiv:1801.04381 [cs]. – 2019.
19. Papers with Code – CEDAR Signature Dataset. – URL: https://paperswithcode.com/dataset/cedar-signature (accessed: 29.11.2021).
20. Abdallah A., Hamada M., Nurseitov D. Attention-based fully gated CNN-BGRU for Russian handwritten text // Journal of Imaging. – 2020. – Vol. 6, N 12. – P. 141.
21. GitHub – openvinotoolkit/cvat: powerful and efficient computer vision annotation tool (CVAT). – URL: https://github.com/openvinotoolkit/cvat (accessed: 29.11.2021).
22. Pokhrel S. Image data labelling and annotation – everything you need to know. – URL: https://towardsdatascience.com/image-data-labelling-and-annotation-everything-you-need-to-know-86ede6c684b1 (accessed: 29.11.2021).
23. GitHub – AlexeyAB/darknet: YOLOv4 / Scaled-YOLOv4 / YOLO – Neural Networks for Object Detection (Windows and Linux version of Darknet). – URL: https://github.com/AlexeyAB/darknet (accessed: 29.11.2021).
24. Yohanandan S. mAP (mean Average Precision) might confuse you! – URL: https://towardsdatascience.com/map-mean-average-precision-might-confuse-you-5956f1bfa9e2 (accessed: 29.11.2021).
25. Module: tf.keras | TensorFlow Core v2.7.0. – URL: https://www.tensorflow.org/api_docs/python/tf/keras?hl=ru (accessed: 29.11.2021).
26. tf.keras.optimizers.Adam | TensorFlow Core v2.7.0. – URL: https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam?hl=ru (accessed: 29.11.2021).
27. Zulkifli H. Understanding learning rates and how it improves performance in deep learning. – URL: https://towardsdatascience.com/understanding-learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059c1c10 (accessed: 29.11.2021).
28. Segmentation models Python API – segmentation models 0.1.2 documentation. – URL: https://segmentation-models.readthedocs.io/en/latest/api.html#losses (accessed: 29.11.2021).
29. tf.keras.metrics.MeanIoU | TensorFlow Core v2.7.0. – URL: https://www.tensorflow.org/api_docs/python/tf/keras/metrics/MeanIoU?hl=ru (accessed: 29.11.2021).