Analysis and data processing systems

ANALYSIS AND DATA PROCESSING SYSTEMS

Print ISSN: 2782-2001          Online ISSN: 2782-215X
English | Русский

Recent issue
№4(100) October - December 2025

Identification of the quadratic kernel of the Volterra equation for modeling non-linear dynamic systems

Issue No 1 (85) January - March 2022
Authors:

Voskoboinikov Yuri E. ,
Boeva Vasilisa A. ,
DOI: http://dx.doi.org/10.17212/2782-2001-2022-1-25-40
Abstract

In the last two decades, integral models have been used to describe the dynamics of stationary nonlinear systems in which the terms of the Volterra series are the kernels. The most commonly used are the linear term (the impulse transition function depends on one variable) and the quadratic term (depending on two variables). An active experiment in which a special combination of rectangular pulses is fed to the input of the system is carried out to select two of its components in the output signal of the identified system - the output of the linear "subsystem" and the output of the "quadratic" subsystem. After isolating the output of the "quadratic" subsystem, the identification of the quadratic term of the Volterra series is reduced to solving a two-dimensional integral equation of the first kind. In the literature, inversion formulas are given in which the quadratic kernel function is obtained as a result of arithmetic operations with second-order derivatives of the output signal. Differentiation of functions is an incorrectly posed problem, when small errors in the assignment of a function (measurement noise) cause large errors in derivatives (especially in second-order derivatives). The paper proposes the use of smoothing cubic splines for stable calculation of derivatives. To calculate the mixed second-order derivative, a spline with two variables is built - a smoothing bicubic spline. The main problem that arises in practice when processing the data of a real experiment is the selection of a smoothing parameter, on the value of which a smoothing error of noisy data depends. As a rule, the value of the variance of the measurement noise is unknown in the experiment. Therefore, in this work, it is proposed to use an algorithm based on the L-curve method to select the smoothing parameter in the constructed splines (especially in the bicubic one), which does not require setting the variance of the measurement noise. The proposed identification algorithm has a high computational efficiency. The performed computational experiment showed a small methodical error (about 1%) and good resistance to noise in measurements of the output signals of the identified system. To reduce the random component of the identification error, it is proposed to use post-processing with a local-spatial compound filter.


Keywords: integral models of non-linear systems, Volterra kernels, inversion formula, differentiation of noise contaminated data, smoothing cubic spline, smoothing bicubic spline, smoothing parameter selection, local-spatial compound filter
Voskoboinikov Yuri E.
Novosibirsk State University of Architecture and Civil Engineering (Sibstrin), 113 Leningradskaya Street,
voscob@mail.ru
Orcid: 0000-0002-5282-6002

Boeva Vasilisa A.
Novosibirsk State University of Achitecture and Civil Engineering (Sibstrin),
v.boyeva@edu.sibstrin.ru
Orcid: 0000-0001-5350-2264

References

1. Kaminskas V. Identifikatsiya dinamicheskikh sistem po diskretnym nablyudeniyam [Identification of dynamic systems based on discrete observations]. Vilnius, Moxlas Publ., 1985. 152 p. (In Russian).



2. Giannakis G.B., Serpedin E. A bibliography on nonlinear system identification. Signal Processing, 2001, vol. 81, no. 3, pp. 533–580.



3. Cheng C.M., Peng Z.K., Zhang W.M., Meng G. Volterra-series-based nonlinear system modeling and its engineering applications: a state-of-the-art review. Mechanical Systems and Signal Processing, 2017, vol. 87, pp. 430–364.



4. Solodusha S.V. Kvadratichnye i kubichnye polinomy Vol'terra: identifikatsiya i prilozhenie [Quadratic and cubic Volterra polynomials: identification and application]. Vestnik Sankt-Peterburgskogo Universiteta. Prikladnaya matematika. Informatika. Protsessy upravleniya = Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2018, vol. 14, iss. 2, pp. 131–144. DOI: 10.21638/11701/spbu10.2018.205.



5. Solodusha S.V. New classes of Volterra integral equations of the first kind related to the modeling of the wind turbine dynamics. 15th International Conference on stability and oscillations of nonlinear control systems (Pyatnitskiy's Conference). Moscow, 2020, pp. 35–39. Doi: 10.1109/stab49150.2020.9140662.



6. Solodusha S.V. Metodika postroeniya integral'nykh modelei dinamicheskikh sistem: algoritmy i prilozheniya v energetike. Diss. dokt. tekhn. nauk [Methods for constructing integral models of dynamic systems: algorithms and applications in energy. Dr. eng. sci. diss.]. Irkutsk, 2018. 353 p.



7. Tikhonov A.N., Arsenin V.Ya. Metody resheniya nekorrektnykh zadach [Methods for solving ill-posed problems]. Moscow, Nauka Publ., 1986. 285 p.



8. Voskoboynikov Yu.E., Boeva V.A. Algoritmy neparametricheskoi identifikatsii slozhnykh tekhnicheskikh sistem [Non-parametric identification algorithms for complex engineering systems]. Nauchnyi vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta = Science bulletin of the Novosibirsk state technical university, 2020, no. 4 (80), pp. 47–64. DOI: 10.17212/1814-1196-2020-4-47-64.



9. Zav'yalov Yu.S., Kvasov B.I., Miroshnichenko V.L. Metody splain-funktsii [Methods of splines]. Moscow, Nauka Publ., 1980. 345 p.



10. Wang Y. Smoothing splines methods and applications. A Chapman & Hall, 2011. 347 p.



11. Voskoboynikov Yu.Е., Preobrazhensky N.G., Sedelnikov A.I. Matematicheskaja obrabotka jeksperimenta v molekuljarnoj gazodinamike [Mathematical experiment proceeding in molecular gas dynamics]. Novosibirsk, Nauka Publ., 1984. 238 p.



12. Voskoboynikov Yu.Е., Boeva V.A. Synthesis of smoothing cubic spline in non-parametric identification technical systems’ algorithm. IOP Conference Series: Materials Science and Engineering, 2020, vol. 953, p. 012035. DOI: 10.1088/1757-899X/953/1/012035.



13. Voskoboynikov Yu.E., Boeva V.A. Ustoichivyi algoritm vychisleniya smeshannykh proizvodnykh v zadachakh neparametricheskoi identifikatsii nelineinykh sistem [Stable algorithm of mixed derivatives calculation for non-parametric identification problems in nonlinear systems]. Sovremennye naukoemkie tekhnologii = Modern High Technologies, 2021, no. 4, pp. 25–29. DOI : 10.17513/snt.38610.



14. Rezghi M., Hosseini S.M. A new variant of L-curve for Tikhonov regularization. Journal of Computational and Applied Mathematics, 2012, vol. 231 (2), pp. 914–924.



15. Cultrera A., Callegaro L. A simple algorithm to find the L-curve corner in the regularization of ill-posed inverse problems. IOP SciNotes, 2020, vol. 1 (2), p. 25004.



16. Voskoboynikov Yu.E., Boeva V.A. Metod L-krivoi dlya otsenivaniya optimal'nogo parametra sglazhivayushchego kubicheskogo splaina [L-curve method for evaluating the optimal parameter of a smoothing cubic spline]. Mezhdunarodnyi nauchno-issledovatel'skii zhurnal = International Research Journal, 2021, no. 11 (113), pt. 1, pp. 6–13. DOI: 10.23670/IRJ.2021.113.11.003.



17. Voskoboinikov Yu.E. Artefakty veivlet-fil'tratsii izobrazhenii i ikh ustranenie [Artefacts of wavelet filtration of images and their elimination]. Avtometriya = Optoelectronics, Instrumentation and Data Processing, 2020, vol. 56, no. 6. DOI: 10.15372/AUT20200601. (In Russian).



18. Meyer Y. Wavelets: algorithms and applications. Philadelphia, SIAM, 1993. 133 p.

Acknowledgements. Funding

The reported study was funded by RFBR, project number 20-38-90041.

The reported study was funded by RSF, project number 22-21-00409.

Просмотров аннотации: 581
Скачиваний полного текста: 582
Просмотров интерактивной версии: 0
For citation:

Voskoboinikov Yu.E., Boeva V.A. Identifikatsiya kvadratichnogo yadra uravneniya Vol'terra dlya modelirovaniya nelineinykh dinamicheskikh sistem [Identification of the quadratic kernel of the Volterra equation for modeling non-linear dynamic systems]. Sistemy analiza i obrabotki dannykh = Analysis and Data Processing Systems, 2022, no. 1 (85), pp. 25–40. DOI: 10.17212/2782-2001-2022-1-25-40.