In this paper, we consider the synthesis of a quadcopter orientation control system with a small change in rotation angles (near hovering), taking into account the inertia of the propeller-motor groups. The feedback linearization of the orientation subsystem is shown, taking into account the inertia of the propeller groups. The controller is designed using a polynomial matrix synthesis method that provides a given location of the poles of the closed system. To evaluate the results, a comparison with a controller that does not take into account the inertia of the propeller-motor groups is made.
Orientation and positioning control of a multirotor vertical takeoff and landing unmanned aerial vehicle (UAV) in space is inextricably linked with the formation of a motion control vector consisting of a combination of thrusts and aerodynamic moments created by each propeller-motor group. The accuracy and speed of formation of the motion control vector significantly affects the positioning and orientation errors of the UAV. In most studies devoted to the synthesis of UAV control systems, a motion control vector is used without taking into account the dynamics of the propeller-motor groups, which in some cases forces us to reduce the speed of the control system. It is shown that the increase in the control system performance can be limited by inertia, since oscillation occurs, and with further attempts to increase the performance by shifting the desired poles of the characteristic polynomial further into the negative region, the control system becomes unstable. To solve this problem, it is proposed to take into account the inertia of the propeller-motor group. It is shown that due to this, it is possible to increase the performance of the control system. It is also shown that the feedback linearization of the quadcopter orientation subsystem is also affected by the inertia of the propeller-motor group, so it is proposed to perform feedback linearization taking into account the inertia.
1. Yao J., Xin M. Finite-time suboptimal control design for aerobatic maneuver of variable-pitch quadrotor. IEEE Transactions on Aerospace and Electronic Systems, 2023, vol. 59 (4), pp. 3736–3749. DOI: 10.1109/TAES.2022.3231241.
2. Shavin M.Yu. Upravlyaemaya dinamika kvadrokoptera s povorotnymi rotorami [Dynamics and control of a tilt-motor quadrotor]. Inzhenernyi zhurnal: nauka i innovatsii = Engineering Journal: Science and Innovation, 2018, no. 4, pp. 1–16. DOI: 10.18698/2308-6033-2018-4-1755.
3. Shavin M.Yu., Pritykin D.A. Sintez sistemy upravleniya kvadrokopterom s povorotnymi rotorami i nablyudenie za podvizhnoi tsel'yu [Tilt-rotor quadrotor control system design and mobile object tracking]. Mekhatronika, Avtomatizatsiya, Upravlenie = Mechatronics, Automatisation, Control, 2019, vol. 20, no. 10, pp. 629–639. DOI: 10.17587/mau.20.629-639.
4. Cutler M., How J.P. Analysis and control of a variable-pitch quadrotor for agile flight. Journal of Dynamic Systems, Measurement, and Control, 2015, vol. 137 (10). DOI: 10.1115/1.4030676.
5. Pyrkin A.A., Bobtsov A.A., Kolyubin S.A., Borisov O.I., Gromov V.S., Aranovskiy S.V. Output controller for quadcopters with wind disturbance cancellation. 2014 IEEE Conference on Control Applications (CCA), 2014, pp. 166–170. DOI: 10.1109/CCA.2014.6981346.
6. Demircioglu H., Basturk H. Adaptive attitude and altitude control of a quadrotor despite unknown wind disturbances. 2017 IEEE 56th Annual Conference on Decision and Control (CDC), Melbourne, VIC, Australia, 2017, pp. 274–279. DOI: 10.1109/CDC.2017.8263678.
7. Andrievsky B.R., Furtat I.B. Disturbance observers: methods and applications. II. Applications. Automation and Remote Control, 2020, vol. 81 (10), pp. 1775–1818. DOI: 10.1134/S0005117920100021.
8. Kusaka T., Tanaka R. Stateful rotor for continuity of quaternion and fast sensor fusion algorithm using 9-axis sensors. Sensors, 2022, vol. 22, p. 7989. DOI: 10.3390/s22207989.
9. Pshikhopov V.Kh., Medvedev M.Yu. Gruppovoe upravlenie dvizheniem mobil'nykh robotov v neopredelennoi srede s ispol'zovaniem neustoichivykh rezhimov [Group control of autonomous robots motion in uncertain environment via unstable modes]. Trudy SPIIRAN = SPIIRAS Proceedings, 2018, iss. 5 (60), pp. 39–63. DOI: 10.15622/sp.60.2.
10. Zulu A., John S. A review of control algorithms for autonomous quadrotors. Open Journal of Applied Sciences, 2014, vol. 4 (14), pp. 547–556. DOI: 10.4236/ojapps.2014.414053.
11. Gasparyan O.N., Darbinyan H.G., Asatryan A.A., Simonyan T.A. On the control of quadcopters based on the feedback linearization method. Proceedings of National Polytechnic University of Armenia. Information Technologies. Electronics, Radio Engineering, 2020, no. 2, pp. 44–54.
12. Itaketo U.T., Inyang H. Dynamic modeling and performance analysis of an autonomous quadrotor using linear and nonlinear control techniques. International Journal of Advances in Engineering and Management, 2021, vol. 3 (12), pp. 1629–1641.
13. Voevoda A., Filiushov Y., Filiushov V. Razrabotka lineinoi sistemy upravleniya tyagoi vintomotornoi gruppy dlya BPLA [Development of a linear control system for a throttle of a UAV propeller-motor group]. Informatika i avtomatizatsiya = Informatics and Automation, 2024, vol. 23, no. 5, pp. 1454–1484. DOI: 10.15622/ia.23.5.7.
14. Shreiner R.T. Sistemy podchinennogo regulirovaniya elektroprivodov. Ch. 1. Elektroprivody postoyannogo toka s podchinennym regulirovaniem koordinat [Systems of subordinate control of electric drives. Pt. 1. DC electric drives with subordinate coordinate control]. Ekaterinburg, UGPPU Publ., 1997. 277 p.
15. Fezzani A., Drid S., Makouf A., Chrifi L. Speed sensorless flatness-based control of PMSM using a second order sliding mode observer. 2013 Eight International Conference and Exhibition on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, 2013, pp. 1–9. DOI: 10.1109/EVER.2013.6521553.
16. Kopecný L., Hnidka J., Bajer J. Drone motor control using fractional-order PID controller. 2023 International Conference on Military Technologies, Brno, Czech Republic, 2023, pp. 1–5. DOI: 10.1109/ICMT58149.2023.10171276.
17. Herrmann L., Bruckmann T., Bröcker M., Schramm D. Development of a dynamic electronic speed controller for multicopters. 2019 18th European Control Conference (ECC), Naples, Italy, 2019, pp. 4010–4015. DOI: 10.23919/ECC.2019.8795711.
18. Krener A.J., Isidori A. Linearization by output injection and nonlinear observers. Systems & Control Letters, 1983, vol. 3, pp. 47–52.
19. Zhevnin A.A., Krishchenko A.P. Upravlyaemost' nelineinykh sistem i sintez algoritmov upravleniya [Controllability of nonlinear systems and synthesis of control algorithms]. Doklady Akademii nauk SSSR, 1981, vol. 258, no. 4, pp. 805–809. (In Russian).
20. Fetisov D.A. Linearization of affine systems based on control-dependent changes of independent variable. Differential Equations, 2017, vol. 53 (11), pp. 1483–1494. DOI: 10.1134/S0012266117110106.
21. Polyak B.T., Khlebnikov M.V., Rapoport L.B. Matematicheskaya teoriya avtomaticheskogo upravleniya [Mathematical theory of automatic control]. Мoscow, Lenand Publ., 2019. 500 p.
22. Filyushov V.Yu. Linearizatsiya nelineinogo trekhkanal'nogo dinamicheskogo ob"ekta obratnoi svyaz'yu [Linearization of multichannel object by output injectio]. Nauchnyi vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta = Science bulletin of the Novosibirsk state technical university, 2017, no. 1 (66), pp. 74–85.
23. Arzamastsev A.A., Kryuchkov A.A. Matematicheskie modeli dlya inzhenernykh raschetov letatel'nykh apparatov mul'tirotornogo tipa (chast' 1) [Mathematical models for engineering calculations of aircrafts of multi-rotor type (Part 1)]. Vestnik Tambovskogo universiteta. Seriya: Estestvennye i tekhnicheskie nauki = Tambov University Reports. Series: Natural and Technical Sciences, 2014, vol. 19, no. 6, pp. 1821–1828.
24. Kato Y., Yashiro D., Yubai K., Komada S. Performance evaluation of a gain-scheduled propeller thrust controller using wind velocity and rotor angular velocity under fluctuating wind. International Conference on Advanced Motion Control, Padova, Italy, 2022, pp. 12–17. DOI: 10.1109/AMC51637.2022.9729317.
25. Gaiduk A.R. Teoriya i metody analiticheskogo sinteza sistem avtomaticheskogo upravleniya (polinomial'nyi podkhod) [The theory and methods of analytical synthesis of automatic control systems (polynomial approach)]. Moscow, Fizmatlit Publ., 2012. 360 p.
26. Filiushov V.Yu. Polinomial'nyi matrichnyi metod sinteza dlya mnogokanal'nykh ob"ektov s nekvadratnoi matrichnoi peredatochnoi funktsiei. Diss. kand. tekhn. nauk [Polynomial matrix synthesis method for multichannel objects with non-square matrix transfer function. PhD eng. sci. diss.]. St. Petersburg, 2022. 177 p.
Filiushov V.Yu. Sintez polinomial'nogo matrichnogo regulyatora uchityvayushchego inertsionnost' ispolnitel'nogo mekhanizma [Synthesis of a polynomial matrix controller that takes into account the inertia of the actuator]. Sistemy analiza i obrabotki dannykh = Analysis and Data Processing Systems, 2024, no. 4 (96), pp. 7–20. DOI: 10.17212/2782-2001-2024-4-7-20.