Analysis and data processing systems

ANALYSIS AND DATA PROCESSING SYSTEMS

Print ISSN: 2782-2001          Online ISSN: 2782-215X
English | Русский

Recent issue
№2(98) April - June 2025

Automatic Control System with Redundant Dimensions of Vector Control: Definition and Application

Issue No 4 (57) October - December 2014
Authors:

A.M. MALYSHENKO
DOI: http://dx.doi.org/10.17212/1814-1196-2014-4-31-40
Abstract
The article is concerned with the definition of the category of automatic control systems that have the number of control actions exceeding the number of controlled variables in any mode or any combinations of modes. In particular, adaptive systems, systems with dual control or a variable structure, fault-tolerant systems and systems with redundancy can be attributed to this category. A lot of modern aircraft, robots with kinematic redundancy, processing units/stations and chemical production complexes possess these very automatic control systems. The definition of control as a purposeful change of states, properties, characteristics and/or processes in a control plant is provided by the author. The concepts of coordinate, parametric, structural and algorithmic control actions, disturbing effects and controlled variables in automatic control systems are introduced. Further typical tasks of control are systematized and the tasks relating to regulation are specified. This systematization is especially important for educational publications in the automatic control theory. Fourteen possible purposes of using the given redundancy including purposeful changes of fundamental properties of plants and systems of automatic control are listed in the article.

 
Keywords: plant; automatic control system; model management tasks; coordinate, parametric, structural and algorithmic variables of the system; excessive dimensions of vector management, use of redundancy for vector control, fundamental properties of managed objects and systems

References
1. Lewis F.L., Vrabie D., Syrmos V.L. Optimal Control. 3 ed. Hoboken, Wiley, 2012. 552 p.

2. Pupkov К.А., ed. Metody klassicheskoi i sovremennoi teorii avtomaticheskogo upravleniya [The methods of classical and modern automatic control theory]: in 5 vol. 2nd ed. Мoscow, Bauman MSTU Publ., 2004.

3. Afanas'ev V.N. Optimal'nye sistemy upravleniya. Analiticheskoe konstruirovanie [Optimal control systems. Analytical design]. Мoscow, Publisher of Physics Faculty MSU, 2011. 170 p.

4. Antonov V.N., Terekhov V.A., Tyukin I.Yu. Adaptivnoe upravlenie v tekhnicheskikh sistemakh [Adaptive control in the technical systems]. St-Petersburg, St. Petersburg State University Publ., 2008. 244 p.

5. Tyukin I. Adaptation in Dynamical Systems. New York, Cambridge University Press, 2011. 428 p.

6. Tyutikov V.V., Tararykin S.V. Robastnoe modal'noe upravlenie tekhnologicheskimi ob"ektami [Robust modal control of the technological plants]. Ivanovo, ISPU Publ., 2006. 255 p.

7. Malyshenko A.M. Sistemy avtomaticheskogo upravleniya s izbytochnoi razmernost'yu vektora upravleniya [Automatic control systems with redundant dimension of control vector]. Tomsk, Tomsk Polytechnic University Publ., 2005. 302 p.

8. Solodovnikov V.V., ed. Tekhnicheskaya kibernetika. Teoriya avtomaticheskogo regulirovaniya: kn. 1: Matematicheskoe opisanie, analiz ustoichivosti i kachestva sistem avtomaticheskogo regulirovaniya [Technical Cybernetics. Theory of automatic control. Book 1. Mathematical description and analysis of the sustainability and quality of automatic control systems]. Мoscow, Mashinostroenie Publ., 1967. 770 p.

9. Volik B.G., ed. Teoriya upravleniya. Terminologiya. Vyp. 107 [Control theory. Terminology. Iss. 107]. Мoscow, Nauka Publ., 1988. 56 p.

10. Levine W.S., ed. The control handbook. In 2 vol. 2nd ed. New York, CRC Press, IEEE Press, 2010. 1566 p.

11. Dorf R.C., Bishop R.H. Modern control systems. Instructor's Solution Manual. 12th ed. London, Prentice Hall, 2011. 832 p.

12. Kalman R.Е. [On the general theory of control systems]. Trudy 1 Mezhdunarodnogo kongressa IFAK po avtomaticheskomu upravleniyu “Teoriya diskretnykh, optimal'nykh i samonastraivayushchikhsya system” [Proceedings of the first International Congress on Automatic Control IFAC “Theory of discrete-time, optimal and self-adjusting systems”. Мoscow, Publishing House of the Academy of Sciences of SSSR. 1961, vol. 2, pp. 521–547.

13. Kalman R.Е., Falb P.L., Arbib M.A. Topics in mathematical system theory. 2nd ed., ster. New York, McGraw Hill, 1969. (Russ. ed.: Kalman R., Falb P., Arbib M. Ocherki po matematicheskoi teorii sistem. Мoscow, Mir Publ., 1971. 398 p.).

14. Sontag E.D. Mathematical control theory. Deterministic finite dimensional systems. 2nd ed. New York, Springer, 1998. 544 p.

15. Strejc V. State space theory of discrete linear control. New York, Academia Prague and John Wiley, 1981. (Russ. ed.: Streits V. Metod prostranstva sostoyanii v teorii diskretnykh lineinykh sistem upravleniya. Moscow, Nauka Publ., 1985. 296 p.).

16. Malyshenko A.M. Indeksy kauzal'nosti dinamicheskikh sistem i ikh ispol'zovanie v skhemotekhnicheskom proektirovanii i pri otsenke funktsional'noi vosproizvodimosti sistem avtomaticheskogo upravleniya [Dynamic systems causality indices and their use in schematic design and in functional reproducibility assessment of automatic control systems]. Izvestiya Tomskogo politekhnicheskogo universitetaBulletin of the Tomsk Polytechnic University, 2013, vol. 323, no. 5, pp. 37–44.

17. Malyshenko A.M. Opredelenie indeksov kauzal'nosti vkhod-vykhodnykh nelineinykh dinamicheskikh sistem [Definition of causality indexes of input-output nonlinear dynamic systems]. Nauchnyi vestnik NGTU – Science Bulletin of Novosibirsk State Technical University, 2014, no. 3 (56), pp. 37–47.

18. Malyshenko A.M. Manevrennost' upravlyaemykh dinamicheskikh sistem i ee kvalimetriya [Maneuverlability of control dynamic systems and his measuring]. Mekhatronika, avtomatizatsiya, upravlenie – Mechatronics, automation, control, 2005, no. 5, pp. 2–6.

19. Petrov B.A. Manipulyatory [Manipulators]. Leningrad, Mashinostroenie Publ., 1984. 238 p.

20. Emel'yanov S.V., ed. Teoriya sistem s peremennoi strukturoi [Theory of variable structure systems]. Moscow, Nauka Publ., 1970. 592 p.

21. Ageev A.M., Sizykh V.N. Sintez optimal'nykh regulyatorov sistemy upravleniya samoletom cherez reshenie obratnoi zadachi AKOR [The flight control system optimal regulators synthesis through the solution of the inverse ACOR problem]. Nauchnyi vestnik NGTU – Science Bulletin of Novosibirsk State Technical University, 2014, no. 3 (56), pp. 7–22.

 
Views: 4351