Analysis and data processing systems

ANALYSIS AND DATA PROCESSING SYSTEMS

Print ISSN: 2782-2001          Online ISSN: 2782-215X
English | Русский

Recent issue
№2(98) April - June 2025

Optimum parameters determination of water steam oil distillation

Issue No 2 (59) April - June 2015
Authors:

M.A. SAMBORSKAYA,
V.P. GUSEV,
I.A. GRYAZNOVA,
A.V. VOLF
DOI: http://dx.doi.org/10.17212/1814-1196-2015-2-157-168
Abstract
Analysis of crude oil distillation unit stability and operation optimization were performed to maximize light fraction yields and to reduce adverse event risks using a superheated water steam of different flow rates and technological parameters in processes of oil distillation. Mathematical models of crude oil distillation units with and without partially heat integration have been developed using Aspen Hysys. An algorithm of stability analysis using steady state mathematical models is proposed. The conditions of water-hydrocarbon azeotropes formation and possible water condensation on the trays have been theoretically investigated in the distillation columns to eliminate the operation instability of distillation units. Parametrical sensitivities of light fraction yields, of heat loads and steam loads on the trays to perturbations of the superheated steam flow rate are estimated. The extreme behavior of parametrical sensitivity coefficients to small perturbation of steam flow rates is observed for both distillation units. Small absolute values of these coefficients ensure stable unit operation throughout the range of superheated water steam flow rates fed to the cube of the main column. An optimization criterion based on the product yield and energy consumption for steam production and condensation is formed. Objective function extremes depending on physical parameters and steam flow rates are numerically determined. Optimal temperatures and water steam flow rates corresponding to the maxima of the objective function for both distillation units are defined. The results obtained have been put into practice.

 
Keywords: crude oil distillation unit, multicomponent system, superheated water steam, stability, parametrical sensitivity, optimization, objective function, stream integration, azeotrope

References
1. Gadalla M., Kamel D., Ashour F., El din H.M. A new optimisation based retrofit approach for revamping an egyptian crude oil distillation unit. Energy Procedia, 2013, vol. 36, pp. 454–464. doi: 10.1016/j.egypro.2013.07.051

2. Li X., Lin C., Wang L., Li H. Exergy analysis of multi-stage crude distillation units. Fron-tiers of Chemical Science and Engineering, 2013, vol. 7, iss. 4, pp. 437–446. doi: 10.1007/s11705-013-1349-y

3. Beychok M.R. The design of sour water strippers. Proceedings of Seventh World Petroleum Congress, Mexico City, Mexico, 2–9 April, 1967, vol. 9, pp. 313–332.

4. Nasibullin R.I. Sposob peregonki nefti [Procedure for oil refining]. Patent RF, no. 2394064, 2010.

5. Nizhegorodtsev V.I., Nizhegorodtseva S.V., Nizhegorodtseva T.V. Sposob pererabotki nefti [Method of refining]. Patent RF, no. 2125077, 1999.

6. Levinter M.E., Akhmetov S.A. Glubokaya pererabotka nefti [Deep processing of oil]. Mos-cow, Khimiya Publ., 1992. 224 p.

7. Benali T., Tondeur D., Jaubert J.N. An improved crude oil atmospheric distillation process for energy integration. Pt. 2. New approach for energy saving by use of residual heat. Applied Ther-mal Engineering, 2012, vol. 40, pp. 132–144. doi: 10.1016/j.applthermaleng.2012.02.004

8. Prats M. Thermal recovery. SPE monograph series. Vol. 7. Richardson, Texas, Society of Petroleum Engineers of AIME,1982. 283 p.

9. Farouq Ali S.M. Heavy oil-evermore mobile. Journal of Petroleum Science and Engineering, 2003, vol. 37, iss. 1–2, pp. 5–9. doi: 10.1016/S0920-4105(02)00307-8

10. Nabipour M., Escrochi M., Ayatollahi S., Boukadi F., Wadhahi M., Maamari R., Bemani A. Laboratory investigation of thermally-assisted gas-oil gravity drainage for secondary and tertiary oil recovery in fractured models. Journal of Petroleum Science and Engineering, 2007, vol. 55, iss. 1–2, pp. 74–82. doi: 10.1016/j.petrol.2006.04.013

11. Willman B.T., Valleroy V.V., Runberg G.W., Cornelius A.J., Powers L.W. Laboratory studies of oil recovery by steam injection. Journal of Petroleum Technology, 1961, Vol. 13, iss. 7, pp. 681–690. doi: 10.2118/1537-G-PA

12. Gryaznova I.A., Volf A.V., Samborskaya M.A. [Superheated water steam parameters effect to extract light oil]. Materialy XV Mezhdunarodnoi nauchno-prakticheskoi konferentsii studentov i molodykh uchenykh imeni professora L.P. Kuleva “Khimiya i khimicheskaya tekhnologiya v XXI veke”. V 2 t. T. 2 [Proceedings of the XV International scientific conference "Chemistry and chemical engineering in XXI century", dedicated to professor L.P. Kulyov. In 2 vol.]. Tomsk, May 26–29, 2014, vol. 2, pp. 30–31.

13. Bulsari A.B., ed. Computer-aided chemical engineering. Vol. 6. Neural networks for chem-ical engineers. New York, Elsevier Science, 1995. 680 p.

14. Hagan M.T., Demuth H.B., Beale M.H. Neural network design. Boston, Massachusetts, PWS Publishing, 1996. 738 p.

15. Cui X., Chen G., Li C., Han X. Vapor–liquid equilibrium of difluoromethane + 1,1,1,2-tetrafluoroethane systems over a temperature range from 258.15 to 343.15 K. Fluid Phase Equilib, vol. 249, iss. 1–2, pp. 97–103. doi: 10.1016/j.fluid.2006.09.017

16. Takagi T., Sakura T., Tsuji T., Hongo M. Bubble point pressure for binary mixtures of difluoromethane with pentafluoroethane and 1,1,1,2-tetrafluoroethane. Fluid Phase Equilib, 1999, vol. 162, iss. 1–2, pp. 171–179. doi: 10.1016/S0378-3812(99)00174-0

17. Samborskaya M.A., Vol'f A.V., Kravtsov A.V., Pavlik V.V. Analiz parametricheskoi chu-vstvitel'nosti kolonny fraktsionirovaniya nefti [Parametrical sensitivity analysis of crude oil distilla-tion unit]. Fundamental'nye issledovaniya – Fundamental research, 2012, no. 6 (pt. 2), pp. 465–470.

18. Kafedra matematicheskogo modelirovaniya i optimizatsii khimiko-tekhnologicheskikh protsessov SPbGTI (TU) [Department of mathematical simulation and optimization of chemical-engineering processes SPbSTI (TU)]: official website. – Available at: http://futurewings.ru/eng/ (ac-cessed 15.06.2015)

19. Samborskaya M.A., Vol'f A.V., Gryaznova I.A., Vdovushkina N.S. Parametricheskaya op-timizatsiya integrirovannykh skhem fraktsionirovaniya nefti [Parametrical optimization of integrated oil fractionation units]. Fundamental'nye issledovaniya – Fundamental research, 2013, no. 8 (pt. 3), pp. 714–719.

ISSN
Views: 3692