Proceedings of the RHSAS

PROCEEDINGS OF THE RUSSIAN HIGHER SCHOOL
ACADEMY OF SCIENCES

Print ISSN: 1727-2769    Online ISSN: 2658-3747
English | Русский

Recent issue
№2(67) April - June 2025

EXPERIMENTAL STUDY OF NOISE PARAMETERS IN A MICROWAVE MEASUREMENT SYSTEM FOR FLUX QUBIT READOUT

Issue No 1 (26) January-March 2015
Authors:

Novikov Ilya,
Boris Ivanov,
Krivetsky Andrey Vasilyevich,
Schekin Pavel Sergeevich,
Ilichev Evgeni,
Vostretsov Aleksey Gennadjevich
DOI: http://dx.doi.org/10.17212/1727-2769-2015-1-52-65
Abstract
High quality noise free measurements for superconducting circuits are provided by a joint operation of a refrigerator and a measurement setup. In this paper we show experimental results of noise power spectral density measurements for a full microwave setup of quantum circuit readout with various temperatures up to 10 mK. The main part of the microwave setup is a low noise cryogenic amplifier. A maximum gain of the amplifier amounts to 15 dB with power con-sumption of 1.5 mW. The amplifier has a wideband frequency range from 1 MHz to 4 GHz. The efficiency of the shielding part of the cryostat provides noise suppression of over 100 dB.
Keywords: dilution refrigerator, microwave setup, microwave measurements, nondestructive measurements

References
  1. Chiorescu I., Bertet P., Semba K., Nakamura Y., Harmans C.J.P.M., Mooij J.E. Coherent dy-namics of a flux qubit coupled to a harmonic oscillator. Letters to Nature, 2004, vol. 431, no. 7005, pp. 159–162. doi: 10.1038/nature02831
  2. Il’ichev E., Greenberg Ya.S. Flux qubit as a sensor of magnetic flux. A Letters Journal Exploring the Frontiers of Physics, 2007, vol. 77, no. 5, pp. 58005-p1–58005-p4. doi: 10.1209/0295-5075/77/58005
  3. Mooij J.E., Orlando T.P., Levitov L., Tian L., Wal C.H. van der, Lloyd S. Josephson persistent-current qubit. Science, 1999, vol. 285, no. 5430, pp. 1036–1039. doi: 10.1126/science. 285.5430.1036
  4. Serban I., Plourde B.L.T., Wilhelm F.K. Quantum nondemolition-like fast measurement scheme for a superconducting qubit. Physical Review B, 2008, vol. 78, no. 5, pp. 054507-1–054507-10. doi: 10.1103/PhysRevB.78.054507
  5. Plourde B.L.T., Robertson T.L., Reichardt P.A., Hime T., Linzen S., Wu C.-E., Clarke J. Flux qubits and readout device with two independent flux lines. Physical Review B, 2005, vol. 72, no. 6, pp. 060506(R)-1–060506(R)-4. doi: 10.1103/PhysRevB.72.060506
  6. Clarke J., Wilhelm F.K. Superconducting quantum bits. Nature, 2008, vol. 453, no. 7198, pp. 1031–1042. doi: 10.1038/nature07128
  7. Devoret M.H., Wallraff A., Martinis J.M. Superconducting qubits: a short review. The Smithsonian/NASA Astrophysics Data System, 2004. 41 p.
  8. Leggett A.J. Superconducting qubits – A major roadblock dissolved. Science, 2002, vol. 296, no. 5569, pp. 861–862. doi: 10.1126/science1071703
  9. Shnirman A., Makhlin Y., Schön G. Noise and decoherence in quantum two-level systems. Physica Scripta, 2002, vol. 102, pp. 147–154. doi: 10.1238/Physica.Topical.102a00147
  10. Amin M.H.S., Truncik C.J.S., Averin D.V. Role of single qubit decoherence time in adia-batic quantum computation. Physical Review A, 2009, vol. 80, pp. 022303-1–022303-5. doi: 10.1103/PhysRevA.80.022303
  11. Fink J.M., Steffen L., Studer P., Bishop L.S., Baur M., Bianchetti R., Bozyigit D., Lang C., Filipp S., Leek P.J., Wallraff A. Quantum-to-classical transition in cavity quantum electro-dynamics. Physical Review Letters, 2010, vol. 105, pp. 163601-1–163601-4. doi: 10.1103/PhysRevLett.105.163601
  12. BFP640ESD. Robust low noise silicon germanium bipolar RF transistor. Revision 1.1. Edi-tion 2012-09-17. Munich, Germany, Infineon Technologies AG, 2013. 27 p. Available at: http://www.infineon.com/dgdl/Infineon-BFP640ESD-DS-v0101-en.pdf?fileId= db3a30432968 c552012991de121f54ac (accessed 22.11.2014)
  13. Ivanov B.I., Trgala M., Grajcar M., Il’ichev E., Meyer H.-G. Cryogenic ultra-low-noise SiGe transistor amplifier. Review of Scientific Instruments, 2011, vol. 82, iss. 10, pp. 104705-1–104705-3. doi: 10.1063/1.3655448
  14. Kiviranta M. Use of SiGe bipolar transistors for cryogenic readout of SQUIDs. Superconduc-tor Sciense and Technology, 2006, vol. 19, no. 12, pp. 1297–1302. doi: 10.1088/0953-2048/19/12/014
  15. Beev N., Kiviranta M. Note: cryogenic low-noise dc-coupled wideband differential amplifier based on SiGe heterojunction bipolar transistors. Review of Scientific Instruments, 2012, vol. 83, iss. 6, pp. 066107-1–066107-3. doi: 10.1063/1.4729665
  16. Weinreb S., Bardin J., Mani H., Jones G. Matched wideband low-noise amplifiers for radio astronomy. Review of Scientific Instruments, 2009, vol. 80, iss. 4, pp. 044702-1–044702-5. doi: 10.1063/1.3103939
  17. Ivanov B.I. Eksperimental'noe issledovanie kriogennykh usilitelei na osnove SiGe bipolyarnykh tranzistorov pri temperature 4.2 K [Experimental study of cryogenic SiGe bipolar transistors at 4.2 K]. Doklady Akademii nauk vysshei shkoly Rossiiskoi Federatsii Procee-dings of the Russian higher school Academy of sciences, 2014, no. 1 (22), pp. 73–82.
Views: 3971