Proceedings of the RHSAS

PROCEEDINGS OF THE RUSSIAN HIGHER SCHOOL
ACADEMY OF SCIENCES

Print ISSN: 1727-2769    Online ISSN: 2658-3747
English | Русский

Recent issue
№2(67) April - June 2025

Hydrodynamics and heat exchange in fluids with viscosity dependence on temperature

Issue No 3 (44) July-September 2019
Authors:

Tkachev Vasily Konstantinovich,
Eremin Anton Vladimirovich,
Tarabrina Tamara Borisovna,
Kudinov Igor Vasil’evich
DOI: http://dx.doi.org/10.17212/1727-2769-2019-3-70-86
Abstract

By introducing an additional sought-for function (ASF) and additional boundary conditions (ABC) using the integral heat balance method, an analytical solution to the problem of heat transfer in a fluid moving in a cylindrical pipe under the parabolic law of viscosity dependence on temperature was found. A function characterizing a change in temperature along the longitudinal coordinate in the center of the pipe was taken as an additional one. Its use is based on the infinite velocity of heat distribution described by a parabolic equation solution. According to it, the temperature of the liquid in the center of the pipe changes immediately after the ASF of the boundary condition is applied to its surface. The application of the ASF makes it possible to reduce a partial differential equation to an ordinary equation. ABCs are defined so that their fulfillment is equal to solving an equation at boundary points. It is shown that solving the equation at the boundary also leads to its solving inside the area with the accuracy depending on the number of additional boundary conditions used in obtaining the solution. The study of the results obtained showed a significant difference in the velocity profiles caused by fluid heating and cooling. So, when heated, the velocity profile approaches the profile of a core flow which is characterized by an almost constant velocity across the channel, and when cooled, it is elongated longitudinally. The studies performed showed a significant difference in the temperature distribution obtained with and without taking into account the viscosity dependence on temperature.


Keywords: heat exchange in a moving fluid, viscosity dependence on temperature, additional sought-for function, additional boundary conditions, infinite velocity of heat propagation, integral method

References
  1. Petukhov B.S. Teploobmen i soprotivlenie pri laminarnom techenii zhidkosti v trubakh [Heat transfer and resistance during laminar fluid flow in pipes]. Moscow, Energiya Publ., 1967. 412 p.
  2. Tsoi P.V. Sistemnye metody rascheta kraevykh zadach teplomassoperenosa [Systemic me­thods for calculating boundary-value problems of heat and mass transfer]. Moscow, MEI Publ., 2005. 568 p.
  3. Reddy M.G., Makinde O.D. Magnetohydrodynamic peristaltic transport of Jeffrey nanofluid in an asymmetric channel. Journal of Molecular Liquids, 2016, vol. 223, pp. 1242–1248.
  4. Alvi N., Latif T., Hussain Q., Asghar S. Peristalsis of nonconstant viscosity Jeffrey fluid with nanoparticles. Results in Physics, 2016, vol. 6, pp. 1109–1125.
  5. Makinde O.D., Iskander T., Mabood F., Khan W.A., Tshehla M.S. MHD Couette – Poiseuille flow of variable viscosity nanofluids in a rotating permeable channel with Hall effect. Journal of Molecular Liquids, 2016, vol. 221, pp. 778–787.
  6. Hasona W.M., El-Shekhipi A.A., Ybrahim M.G. Combined effects of magnetohydrodymanic and temperature dependent viscosity on peristaltic flow of Jeffrey nanofluid through a porous medium: applications to oil refinement. International Journal of Heat Mass Transfer, 2018, vol. 126, pp. 700–714.
  7. Kudinov V.A., Stefanyuk E.V. Zadachi teploprovodnosti na osnove opredeleniya fronta temperaturnogo vozmushcheniya [Heat exchange problems based on temperature perturbation front determination]. Izvestiya Rossiiskoi akademii nauk. Energetika – Proceedings of the Russian Academy of Sciences. Power Engineering, 2008, no. 5, pp. 141–157.
  8. Lykov A.V. Metody resheniya nelineinykh uravnenii nestatsionarnoi teploprovodnosti [Methods for solving nonlinear equations of nonstationary heat conduction]. Izvestiya Aka­demii nauk SSSR – Proceedings of Academy of Sciences. Power Engeneering and Transport, 1970, no. 5, pp. 109–150.
  9. Goodman T. Primeneniye integralnyh metodov v nelineinyh zadachah nestatsionarnogo teploobmena [Application of integral methods in nonlinear problems of unsteady heat transfer]. Problemy teploobmena [Advances in heat transfer]. Moscow, Atomizdat Publ., 1967, pp. 41–96. (In Russian).
  10. Glazunov Yu.T. Variatsionnye metody [Variational methods]. Moscow, Izhevsk, Re­gulyarnaya i khaotichnaya dinamika Publ., Institut komp’yuternykh issledovanii Publ., 2006. 470 p.
  11. Belyaev N.M., Ryadno A.A. Metody nestatsionarnoi teploprovodnosti [Methods of non-stationary thermal conductivity]. Moscow, Vysshaya shkola Publ., 1978. 328 p.
  12. Kudinov V.A., Kudinov I.V., Kotova E.V. Dopolnitel'nye granichnye usloviya v nestatsionarnykh zadachakh teploprovodnosti [Additional boundary conditions in unsteady-state heat conduction problems]. Teplofizika vysokikh temperatureHigh Temperature, 2017, vol. 55, no. 4, pp. 556–563. (In Russian).
  13. Kantorovich L.V. Ob odnom metode priblizhennogo resheniya differentsial'nykh uravnenii v chastnykh proizvodnykh [On one method of approximate solution to partial differential equations]. Doklady Akademii nauk SSSRProceedings of the USSR Academy of Sciences, 1934, vol. 2, no. 9, pp. 532–534. (In Russian).
  14. Fedorov F.M. Granichnyi metod resheniya prikladnykh zadach matematicheskoi fiziki [Boundary method for solving applied problems of mathematical physics]. Novosibirsk, Nauka Publ., 2000. 220 p.
  15. Kudryashov L.I., Men'shikh N.L. Priblizhennye resheniya nelineinykh zadach teplo-provodnosti [Approximate solutions of nonlinear heat problems]. Moscow, Mashinostroenie Publ., 1979. 232 p.
  16. Kartashov E.M., Kudinov V.A., Kalashnikov V.V. Teoriya teplomassoperenosa: reshenie zadach dlya mnogosloinykh konstruktsii [Theory of heat and mass transfer: solving problems for multilayer structures]. 2nd ed. Moscow, Yurait Publ., 2018. 435 p.
  17. Kudinov I.V. Poluchenie tochnykh analiticheskikh reshenii zadach teploprovodnosti s peremennymi vo vremeni granichnymi usloviyami [Obtaining exact analytical decisions of tasks heat conductions with variables in time boundary conditions]. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Tekhnicheskie nauki – Vestnik of Samara State Technical University. Technical Sciences Series, 2016, no. 4 (52), pp. 108–117.
  18. Kudinov I.V., Stefanyuk E.V., Skvortsova M.P., Maksimenko G.N. Ob odnom metode polucheniya tochnykh analiticheskikh reshenii zadach teploprovodnosti s istochnikom teploty [Method of obtaining exact analytical solutions of tasks of heat conductivity with warmth sources]. Izvestiya vysshikh uchebnykh zavedenii. Chernaya metallurgiya – Izvestiya. Ferrous Metallurgy, 2017, vol. 60, no. 11, pp. 877–882.
  19. Kudinov I.V., Kudinov V.A., Kotova E.V., Eremin A.V. Ob odnom metode resheniya nestatsionarnykh kraevykh zadach [On one method of solving nonstationary boundary-value problems]. Inzhenerno-fizicheskii zhurnal – Journal of Engineering Physics and Thermophysics, 2017, vol. 90, no. 6, pp. 1387–1397. (In Russian).
  20. Kudinov V.I., Kudinov V.A., Kotova E.V. Dopolnitel'nye granichnye usloviya v nestatsionarnykh zadachakh teploprovodnosti [Additional boundary conditions in unsteady-state heat conduction problems]. Teplofizika vysokikh temperature – High Temperature, 2017, vol. 55, no. 4, pp. 556–563. (In Russian).
For citation:

Tkachev V.K., Eremin A.V., Tarabrina T.B., Kudinov I.V. Gidrodinamika i teploobmen v zhidkosti pri zavisimosti vyazkosti ot temperatury [Hydrodynamics and heat exchange in fluids with viscosity dependence on temperature]. Doklady Akademii nauk vysshei shkoly Rossiiskoi Federatsii – Proceedings of the Russian higher sc

Views: 1648