Obrabotka metallov

OBRABOTKA METALLOV

METAL WORKING AND MATERIAL SCIENCE
Print ISSN: 1994-6309    Online ISSN: 2541-819X
English | Русский

Recent issue
Vol. 27, No 2 April - June 2025

Structure and properties of TiB-TiC-Ti layers fabricated on cp-titanium substrates by electron beam cladding

Issue No 4 (73) October - December 2016
Authors:

Lenivtseva O.G.,
Drobyaz E.A.,
Gontarenko A.S.,
Zimogliadova T.A.,
Chuchkova L.V.
DOI: http://dx.doi.org/10.17212/1994-6309-2016-4-63-74
Abstract
The influence of non-vacuum electron beam treatment modes on the structure and properties of wear resistant TiB-TiC-Ti layers formed on the surface of VT1-0 titanium alloy is investigated. A mixture of titanium, boron carbide and flux powders is used as filler. The structure and phase composition of the layers are investigated by the means of optical microscopy and scanning electron microscopy, and X-ray diffractometry. The experiments resulted in the formation of layers with the thickness of 3.4 mm consisting of α (α´)-Ti, titanium carbide and titanium monoboride. Structural investigations revealed a high volume fraction of TiC and TiB reinforcing compounds contributed in the formation of cracks in the cladded layers. Variation of technological regimes of the electron beam treatment affected the hardness of cladded layers. Treatment of the sample containing 20 wt. % of boron carbide in a filler with a beam current of 22 µA led to the formation of the layer with hardness of 582 HV. This value was about 3.5-fold higher than titanium microhardness. Increase of a beam current by 1 µA resulted in decrease of the microhardness level to 543 HV. Treatment of the sample containing 12 wt. % of boron carbide in a filler led to the formation of the layer with hardness of 436 HV.

Wear resistance of fabricated materials is estimated in the conditions of friction by non-rigidly fixed abrasive particles. The best characteristics possessed the layers obtained by cladding of 20 wt. % boron carbide. Intensity of wear of the coated samples was 8-fold lower comparing to cp-titanium.
Keywords: Electron beam cladding, titanium, titanium carbide, titanium boride, microhardness, wear resistance

References
1. Leyens С., Peters M., eds. Titanium and titanium alloys: fundamentals and applications. Weinheim, Wiley-VCH, 2005. 532 p. ISBN 978-3-527-30534-6.

2. Dong H. Tribological properties of titanium-based alloys. Surface Engineering of Light Alloys. Oxford, Woodhead Publishing, 2010, pp. 58–80. ISBN 978-1-845-69945-1.

3. Miller P.D., Holladay J.W. Friction and wear properties of titanium. Wear, 1958, vol. 2, pp. 133–140. doi: 10.1016/0043-1648(58)90428-9

4. Rabinowicz E. Friction properties of titanium and its alloys. Metal Progress, 1954, vol. 65 (2), pp. 107–110.

5. Alam M.O., Haseeb A.S.M.A. Response of Ti–6Al–4V and Ti–24Al–11Nb alloys to dry sliding wear against hardened steel. Tribology International, 2002, vol. 35, iss. 6, pp. 357–362. doi: 10.1016/S0301-679X(02)00015-4

6. Budinski K.G. Tribological properties of titanium alloys. Wear, 1991, vol. 151, iss. 2, pp. 203–217. doi: 10.1016/0043-1648(91)90249-T

7. Sun R.L., Lei Y.W. Microstructure and wear resistance of laser clad layer of TiN on TC4 alloy. Journal of Tianjin Polytechnic University, 2007, vol. 26, iss. 4, pp. 57–59.

8. Filip R., Sieniawski J., Pleszakov E. Formation of surface layers on Ti–6Al–4V titanium alloy by laser alloying. Surface Engineering, 2006, vol. 22, iss. 1, pp. 53–57. doi: 10.1179/174329406X84967

9. Tian Y.S., Chen C.Z., Wang D.Y., Lei T.Q. Laser surface modification of titanium alloys – a review. Surface Review and Letters, 2005, vol. 12, iss. 01, pp. 123–130. doi: 10.1142/S0218625X0500686X

10. Tian Y.S., Chen C.Z., Li S.T., Huo Q.H. Research progress on laser surface modification of titanium alloys. Applied Surface Science, 2005, vol. 242, iss. 1–2, pp. 177–184. doi: 10.1016/j.apsusc.2004.08.011

11. Bao R., Yu H., Chen  C., Qi B., Zhang L. Development of laser cladding wear-resistant coating on titanium alloys. Surface Review and Letters, 2006, vol. 13, pp. 645–654. doi: 10.1142/S0218625X06008608

12. Saleh A.F., Abboud J.H., Benyounis K.Y. Surface carburizing of Ti–6Al–4V alloy by laser melting. Optics and Lasers in Engineering, 2010, vol. 48, iss. 3, pp. 257–267. doi: 10.1016/j.optlaseng.2009.11.001

13. Molian P.A., Hualun L. Laser cladding of Ti–6Al–4V with bn for improved wear performance. Wear, 1989, vol. 130, iss. 2, pp. 337–352. doi: 10.1016/0043-1648(89)90187-7

14. Lenivtseva O.G., Bataev I.A., Golkovsky M.G., Samoylenko V.V., Dostovalov R.A. Poluchenie iznosostoikikh pokrytii na titanovykh splavakh metodom vnevakuumnoi elektronno-luchevoi obrabotki [Production of wear-resistance coatings on titanium alloys by the method of non-vacuum electron-beam cladding]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) – Metal Working and Material Science, 2013, no. 3 (60), pp. 103–109.

15. Oh J.C., Euh K., Lee S., Koo Y., Kim N.J. Hardness improvement of TiB2/Ti surface-alloyed material fabricated by high-energy electron beam irradiation. Scripta Materialia, 1998, vol. 39, iss. 10, pp. 1389–1394. doi: 10.1016/S1359-6462(98)00325-X

16. Oh J.C., Choo D.-K., Lee S. Microstructural modification and hardness improvement of titanium-base surface-alloyed materials fabricated by high-energy electron beam irradiation. Surface and Coatings Technology, 2000, vol. 127, iss. 1, pp. 76–85. doi: 10.1016/S0257-8972(99)00664-7

17. Kühnle T., Partes K. In-situ formation of titanium boride and titanium carbide by selective laser melting. Physics Procedia, 2012, vol. 39, pp. 432–438. doi: 10.1016/j.phpro.2012.10.058

18. Baker T.N., Selamat M.S. Surface engineering of Ti–6Al–4V by nitriding and powder alloying using CW CO2 laser. Materials Science and Technology, 2008, vol. 24, iss. 2, pp. 189–200. doi: 10.1179/174328407X226563

19. Chen Y., Liu D., Li F., Li L. WCp/Ti–6Al–4V graded metal matrix composites layer produced by laser melt injection. Surface and Coatings Technology, 2008, vol. 202, iss. 19, pp. 4780–4787. doi: 10.1016/j.surfcoat.2008.04.057

20. Höche D., Schaaf P. Laser nitriding: investigations on the model system TiN. A review. Heat and Mass Transfer, 2011, vol. 47, iss. 5, pp. 519–540. doi: 10.1007/s00231-010-0742-z

21. Lenivtseva O.G., Butylenkova O.A., Golovin E.D., Golkovsky M.G. High-energy electron beam cladding of titanium and carbon on titanium alloy. The 8th International Forum on Strategic Technology (IFOST 2013): proceedings, Ulaanbaatar, Mongolia, 28 June – 1 July 2013, vol. 1, pp. 152–155.

22. Lenivtseva O.G., Bataev I.A., Golkovski M.G., Bataev A.A., Samoilenko V.V., Plotnikova N.V. Structure and properties of titanium surface layers after electron beam alloying with powder mixtures containing carbon. Applied Surface Science, 2015, vol. 355, pp. 320–326. doi: 10.1016/j.apsusc.2015.07.043

23. Ayers J.D., Schaefer R.J., Robey W.P. A laser processing technique for improving the wear resistance of metals. The Journal of The Minerals, Metals & Materials Society, 1981, vol. 33, iss. 8, pp. 19–23. doi: 10.1007/BF03339467

24. Draper C.W., Ewing C.A. Laser surface alloying: a bibliography. Journal of Materials Science, 1984, vol. 19, iss. 12, pp. 3815–3825. doi: 10.1007/BF00980743

25. Oh J.C., Yun E., Golkovski M.G., Lee S. Improvement of hardness and wear resistance in SiC/Ti–6Al–4V surface composites fabricated by high-energy electron beam irradiation. Materials Science and Engineering: A, 2003, vol. 351, iss. 1–2, pp. 98–108. doi: 10.1016/S0921-5093(02)00821-3

26. Lee C.S., Oh J.C., Lee S. Improvement of hardness and wear resistance of (TiC, TiB)/Ti–6Al–4V surface-alloyed materials fabricated by high-energy electron-beam irradiation. Metallurgical and Materials Transactions A, 2003, vol. 34, iss. 7, pp. 1461–1471. doi: 10.1007/s11661-003-0258-y

27. Yun E., Lee K., Lee S. Improvement of high-temperature hardness of (TiC, TiB)/Ti–6Al–4V surface composites fabricated by high-energy electron-beam irradiation. Surface and Coatings Technology, 2004, vol. 184, iss. 1, pp. 74–83. doi: 10.1016/j.surfcoat.2003.10.017

28. Bataev I.A., Bataev A.A., Golkovsky M.G., Teplykh A.Y., Burov V.G., Veselov S.V. Non-vacuum electron-beam boriding of low-carbon steel. Surface and Coatings Technology, 2012, vol. 207, pp. 245–253. doi: 10.1016/j.surfcoat.2012.06.081

29. Bataev I.A., Bataev A.A., Golkovski M.G., Krivizhenko D.S., Losinskaya A.A., Lenivtseva O.G. Structure of surface layers produced by non-vacuum electron beam boriding. Applied Surface Science, 2013, vol. 284, pp. 472–481. doi: 10.1016/j.apsusc.2013.07.121

30. Lenivtseva O.G., Bataev I.A., Ivancivsky V.V., Belousova N.S., Golovin E.D., Zimoglyadova T.A. Vnevakuumnaya elektronno-luchevaya naplavka uglerodsoderzhashchikh poroshkovykh smesei na zagotovki iz titana VT1-0 [Аtmospheric electron-beam overlay welding of carbon containing powder mixtures onto technically pure titanium VT1-0]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) – Metal Working and Material Science, 2013, no. 4 (61), pp. 49–57.

31. Zhang X., Lü W., Zhang D., Wu R., Bian Y., Fang P. In situ technique for synthesizing (TiB+TiC)/Ti composites. Scripta Materialia, 1999, vol. 41, iss. 1, pp. 39–46. doi: 10.1016/S1359-6462(99)00087-1

32. Li J., Yu Z., Wang H., Li M. Microstructural characterization of titanium matrix composite coatings reinforced by in situ synthesized TiB + TiC fabricated on Ti6Al4V by laser cladding. Rare Metals, 2010, vol. 29, iss. 5, pp. 465–472. doi: 10.1007/s12598-010-0151-y

33. Liang J., Chen S., Liu C., Liu F. Study on microstructure of laser in situ formation of TiBX and TiC titanium composite coatings. Materials Science Forum, 2011, vol. 686, pp. 646–653. doi: 10.4028/www.scientific.net/MSF.686.646

34. Zhang Y., Sun J., Vilar R. Characterization of (TiB + TiC)/TC4 in situ titanium matrix composites prepared by laser direct deposition. Journal of Materials Processing Technology, 2011, vol. 211, iss. 4, pp. 597–601. doi: 10.1016/j.jmatprotec.2010.11.009

35. Villars P., Prince A., Okamoto H., eds. Handbook of ternary alloy phase diagrams. Materials Park, Ohio, ASM International, 1994. ISBN 10: 0871705265. ISBN 13: 9780871705266.

36. Lu W., Zhang D., Zhang X., Wu R., Sakata T., Mori H. Microstructural characterization of TiB in in situ synthesized titanium matrix composites prepared by common casting technique. Journal of Alloys and Compounds, 2001, vol. 327, iss. 1–2, pp. 240–247. doi: 10.1016/S0925-8388(01)01445-1

37. Sahay S.S., Ravichandran K.S., Atri R., Chen B., Rubin J. Evolution of microstructure and phases in in situ processed Ti–TiB composites containing high volume fractions of TiB whiskers. Journal of Materials Research, 1999, vol. 14, iss. 11, pp. 4214–4223. doi: 10.1557/JMR.1999.0571

38. Ni D.R., Geng L., Zhang J., Zheng Z.Z. TEM characterization of symbiosis structure of in situ TiC and TiB prepared by reactive processing of Ti–B4C. Materials Letters, 2008, vol. 62, iss. 4–5, pp. 686–688. doi: 10.1016/j.matlet.2007.06.033

39. Kooi B.J., Pei Y.T., Hosson J.T.M. de. The evolution of microstructure in a laser clad TiB–Ti composite coating. Acta Materialia, 2003, vol. 51, iss. 3, pp. 831–845. doi: 10.1016/S1359-6454(02)00475-5

40. Tamirisakandala S., Bhat R.B., Tiley J.S., Miracle D.B. Grain refinement of cast titanium alloys via trace boron addition. Scripta Materialia, 2005, vol. 53, iss. 12, pp. 1421–1426. doi: 10.1016/j.scriptamat.2005.08.020
Views: 3561