References
1. Leyens С., Peters M., eds. Titanium and titanium alloys: fundamentals and applications. Weinheim, Wiley-VCH, 2005. 532 p. ISBN 978-3-527-30534-6.
2. Dong H. Tribological properties of titanium-based alloys. Surface Engineering of Light Alloys. Oxford, Woodhead Publishing, 2010, pp. 58–80. ISBN 978-1-845-69945-1.
3. Miller P.D., Holladay J.W. Friction and wear properties of titanium. Wear, 1958, vol. 2, pp. 133–140. doi: 10.1016/0043-1648(58)90428-9
4. Rabinowicz E. Friction properties of titanium and its alloys. Metal Progress, 1954, vol. 65 (2), pp. 107–110.
5. Alam M.O., Haseeb A.S.M.A. Response of Ti–6Al–4V and Ti–24Al–11Nb alloys to dry sliding wear against hardened steel. Tribology International, 2002, vol. 35, iss. 6, pp. 357–362. doi: 10.1016/S0301-679X(02)00015-4
6. Budinski K.G. Tribological properties of titanium alloys. Wear, 1991, vol. 151, iss. 2, pp. 203–217. doi: 10.1016/0043-1648(91)90249-T
7. Sun R.L., Lei Y.W. Microstructure and wear resistance of laser clad layer of TiN on TC4 alloy. Journal of Tianjin Polytechnic University, 2007, vol. 26, iss. 4, pp. 57–59.
8. Filip R., Sieniawski J., Pleszakov E. Formation of surface layers on Ti–6Al–4V titanium alloy by laser alloying. Surface Engineering, 2006, vol. 22, iss. 1, pp. 53–57. doi: 10.1179/174329406X84967
9. Tian Y.S., Chen C.Z., Wang D.Y., Lei T.Q. Laser surface modification of titanium alloys – a review. Surface Review and Letters, 2005, vol. 12, iss. 01, pp. 123–130. doi: 10.1142/S0218625X0500686X
10. Tian Y.S., Chen C.Z., Li S.T., Huo Q.H. Research progress on laser surface modification of titanium alloys. Applied Surface Science, 2005, vol. 242, iss. 1–2, pp. 177–184. doi: 10.1016/j.apsusc.2004.08.011
11. Bao R., Yu H., Chen C., Qi B., Zhang L. Development of laser cladding wear-resistant coating on titanium alloys. Surface Review and Letters, 2006, vol. 13, pp. 645–654. doi: 10.1142/S0218625X06008608
12. Saleh A.F., Abboud J.H., Benyounis K.Y. Surface carburizing of Ti–6Al–4V alloy by laser melting. Optics and Lasers in Engineering, 2010, vol. 48, iss. 3, pp. 257–267. doi: 10.1016/j.optlaseng.2009.11.001
13. Molian P.A., Hualun L. Laser cladding of Ti–6Al–4V with bn for improved wear performance. Wear, 1989, vol. 130, iss. 2, pp. 337–352. doi: 10.1016/0043-1648(89)90187-7
14. Lenivtseva O.G., Bataev I.A., Golkovsky M.G., Samoylenko V.V., Dostovalov R.A. Poluchenie iznosostoikikh pokrytii na titanovykh splavakh metodom vnevakuumnoi elektronno-luchevoi obrabotki [Production of wear-resistance coatings on titanium alloys by the method of non-vacuum electron-beam cladding]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) – Metal Working and Material Science, 2013, no. 3 (60), pp. 103–109.
15. Oh J.C., Euh K., Lee S., Koo Y., Kim N.J. Hardness improvement of TiB2/Ti surface-alloyed material fabricated by high-energy electron beam irradiation. Scripta Materialia, 1998, vol. 39, iss. 10, pp. 1389–1394. doi: 10.1016/S1359-6462(98)00325-X
16. Oh J.C., Choo D.-K., Lee S. Microstructural modification and hardness improvement of titanium-base surface-alloyed materials fabricated by high-energy electron beam irradiation. Surface and Coatings Technology, 2000, vol. 127, iss. 1, pp. 76–85. doi: 10.1016/S0257-8972(99)00664-7
17. Kühnle T., Partes K. In-situ formation of titanium boride and titanium carbide by selective laser melting. Physics Procedia, 2012, vol. 39, pp. 432–438. doi: 10.1016/j.phpro.2012.10.058
18. Baker T.N., Selamat M.S. Surface engineering of Ti–6Al–4V by nitriding and powder alloying using CW CO2 laser. Materials Science and Technology, 2008, vol. 24, iss. 2, pp. 189–200. doi: 10.1179/174328407X226563
19. Chen Y., Liu D., Li F., Li L. WCp/Ti–6Al–4V graded metal matrix composites layer produced by laser melt injection. Surface and Coatings Technology, 2008, vol. 202, iss. 19, pp. 4780–4787. doi: 10.1016/j.surfcoat.2008.04.057
20. Höche D., Schaaf P. Laser nitriding: investigations on the model system TiN. A review. Heat and Mass Transfer, 2011, vol. 47, iss. 5, pp. 519–540. doi: 10.1007/s00231-010-0742-z
21. Lenivtseva O.G., Butylenkova O.A., Golovin E.D., Golkovsky M.G. High-energy electron beam cladding of titanium and carbon on titanium alloy. The 8th International Forum on Strategic Technology (IFOST 2013): proceedings, Ulaanbaatar, Mongolia, 28 June – 1 July 2013, vol. 1, pp. 152–155.
22. Lenivtseva O.G., Bataev I.A., Golkovski M.G., Bataev A.A., Samoilenko V.V., Plotnikova N.V. Structure and properties of titanium surface layers after electron beam alloying with powder mixtures containing carbon. Applied Surface Science, 2015, vol. 355, pp. 320–326. doi: 10.1016/j.apsusc.2015.07.043
23. Ayers J.D., Schaefer R.J., Robey W.P. A laser processing technique for improving the wear resistance of metals. The Journal of The Minerals, Metals & Materials Society, 1981, vol. 33, iss. 8, pp. 19–23. doi: 10.1007/BF03339467
24. Draper C.W., Ewing C.A. Laser surface alloying: a bibliography. Journal of Materials Science, 1984, vol. 19, iss. 12, pp. 3815–3825. doi: 10.1007/BF00980743
25. Oh J.C., Yun E., Golkovski M.G., Lee S. Improvement of hardness and wear resistance in SiC/Ti–6Al–4V surface composites fabricated by high-energy electron beam irradiation. Materials Science and Engineering: A, 2003, vol. 351, iss. 1–2, pp. 98–108. doi: 10.1016/S0921-5093(02)00821-3
26. Lee C.S., Oh J.C., Lee S. Improvement of hardness and wear resistance of (TiC, TiB)/Ti–6Al–4V surface-alloyed materials fabricated by high-energy electron-beam irradiation. Metallurgical and Materials Transactions A, 2003, vol. 34, iss. 7, pp. 1461–1471. doi: 10.1007/s11661-003-0258-y
27. Yun E., Lee K., Lee S. Improvement of high-temperature hardness of (TiC, TiB)/Ti–6Al–4V surface composites fabricated by high-energy electron-beam irradiation. Surface and Coatings Technology, 2004, vol. 184, iss. 1, pp. 74–83. doi: 10.1016/j.surfcoat.2003.10.017
28. Bataev I.A., Bataev A.A., Golkovsky M.G., Teplykh A.Y., Burov V.G., Veselov S.V. Non-vacuum electron-beam boriding of low-carbon steel. Surface and Coatings Technology, 2012, vol. 207, pp. 245–253. doi: 10.1016/j.surfcoat.2012.06.081
29. Bataev I.A., Bataev A.A., Golkovski M.G., Krivizhenko D.S., Losinskaya A.A., Lenivtseva O.G. Structure of surface layers produced by non-vacuum electron beam boriding. Applied Surface Science, 2013, vol. 284, pp. 472–481. doi: 10.1016/j.apsusc.2013.07.121
30. Lenivtseva O.G., Bataev I.A., Ivancivsky V.V., Belousova N.S., Golovin E.D., Zimoglyadova T.A. Vnevakuumnaya elektronno-luchevaya naplavka uglerodsoderzhashchikh poroshkovykh smesei na zagotovki iz titana VT1-0 [Аtmospheric electron-beam overlay welding of carbon containing powder mixtures onto technically pure titanium VT1-0]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) – Metal Working and Material Science, 2013, no. 4 (61), pp. 49–57.
31. Zhang X., Lü W., Zhang D., Wu R., Bian Y., Fang P. In situ technique for synthesizing (TiB+TiC)/Ti composites. Scripta Materialia, 1999, vol. 41, iss. 1, pp. 39–46. doi: 10.1016/S1359-6462(99)00087-1
32. Li J., Yu Z., Wang H., Li M. Microstructural characterization of titanium matrix composite coatings reinforced by in situ synthesized TiB + TiC fabricated on Ti6Al4V by laser cladding. Rare Metals, 2010, vol. 29, iss. 5, pp. 465–472. doi: 10.1007/s12598-010-0151-y
33. Liang J., Chen S., Liu C., Liu F. Study on microstructure of laser in situ formation of TiBX and TiC titanium composite coatings. Materials Science Forum, 2011, vol. 686, pp. 646–653. doi: 10.4028/www.scientific.net/MSF.686.646
34. Zhang Y., Sun J., Vilar R. Characterization of (TiB + TiC)/TC4 in situ titanium matrix composites prepared by laser direct deposition. Journal of Materials Processing Technology, 2011, vol. 211, iss. 4, pp. 597–601. doi: 10.1016/j.jmatprotec.2010.11.009
35. Villars P., Prince A., Okamoto H., eds. Handbook of ternary alloy phase diagrams. Materials Park, Ohio, ASM International, 1994. ISBN 10: 0871705265. ISBN 13: 9780871705266.
36. Lu W., Zhang D., Zhang X., Wu R., Sakata T., Mori H. Microstructural characterization of TiB in in situ synthesized titanium matrix composites prepared by common casting technique. Journal of Alloys and Compounds, 2001, vol. 327, iss. 1–2, pp. 240–247. doi: 10.1016/S0925-8388(01)01445-1
37. Sahay S.S., Ravichandran K.S., Atri R., Chen B., Rubin J. Evolution of microstructure and phases in in situ processed Ti–TiB composites containing high volume fractions of TiB whiskers. Journal of Materials Research, 1999, vol. 14, iss. 11, pp. 4214–4223. doi: 10.1557/JMR.1999.0571
38. Ni D.R., Geng L., Zhang J., Zheng Z.Z. TEM characterization of symbiosis structure of in situ TiC and TiB prepared by reactive processing of Ti–B4C. Materials Letters, 2008, vol. 62, iss. 4–5, pp. 686–688. doi: 10.1016/j.matlet.2007.06.033
39. Kooi B.J., Pei Y.T., Hosson J.T.M. de. The evolution of microstructure in a laser clad TiB–Ti composite coating. Acta Materialia, 2003, vol. 51, iss. 3, pp. 831–845. doi: 10.1016/S1359-6454(02)00475-5
40. Tamirisakandala S., Bhat R.B., Tiley J.S., Miracle D.B. Grain refinement of cast titanium alloys via trace boron addition. Scripta Materialia, 2005, vol. 53, iss. 12, pp. 1421–1426. doi: 10.1016/j.scriptamat.2005.08.020