Обработка металлов

ОБРАБОТКА МЕТАЛЛОВ

ТЕХНОЛОГИЯ • ОБОРУДОВАНИЕ • ИНСТРУМЕНТЫ
Print ISSN: 1994-6309    Online ISSN: 2541-819X
English | Русский

Последний выпуск
Том 26, № 3 Июль - Сентябрь 2024

Структура и свойства слоёв TiB-TiC-Ti, полученных на поверхности сплава ВТ1-0 методом вневакуумной электронно-лучевой наплавки

Выпуск № 4 (73) Октябрь - Декабрь 2016
Авторы:

Ленивцева Ольга Геннадьевна,
Дробяз Екатерина Александровна,
Гонтаренко Александра Сергеевна,
Зимоглядова Татьяна Алексеевна,
Чучкова Любовь Вадимовна
DOI: http://dx.doi.org/10.17212/1994-6309-2016-4-63-74
Аннотация
Исследовано влияние режимов вневакуумной электронно-лучевой обработки на структуру и свойства износостойких слоев борид титана-карбид титана-титан, полученных на заготовках из титанового сплава ВТ1-0. В качестве наплавочного материала использовали смесь титана с карбидом бора и сварочными флюсами. Структурные исследования проводили с использованием оптической и растровой электронной микроскопии, энергодисперсионного и рентгенофазового анализов. В результате проведенных экспериментов были получены слои толщиной до 3,4 мм, состоящие из фаз α (α´)-Ti, карбида и моноборида титана. Структурные исследования показали, что высокая объемная доля упрочняющих фаз TiC и TiB способствует формированию трещин в наплавленных слоях. Изменение технологических режимов электронно-лучевой обработки оказывает влияние на твердость наплавленных слоев. При токе пучка 22 мА средний уровень микротвердости слоя, полученного при наплавке 20 % вес. карбида бора составляет 582 HV, что в ~3,5 раза выше твердости основного металла. Повышение тока пучка до 23 мА способствует снижению уровня микротвердости до 543 HV. Средний уровень микротвердости образцов, полученных при наплавке 12 % вес. карбида бора, составляет 436 HV.

 Для оценки износостойкости полученные материалы испытывались на трение в условиях нежестко закрепленных абразивных частиц. Лучшие показатели достигнуты при испытании слоев, сформированных в процессе наплавки 20 % вес. карбида бора. Интенсивность изнашивания образцов с покрытием в восемь раз меньше по сравнению с титаном ВТ1-0.
Ключевые слова: электронно-лучевая наплавка, титан, карбиды титана, бориды титана, микротвердость, износостойкость.

Список литературы
1. Titanium and titanium alloys: fundamentals and applications / ed. by C. Leyens and M. Peters. – Weinheim: Wiley-VCH, 2005. – 532 p.

2. Dong H. Tribological properties of titanium-based alloys // Surface Engineering of Light Alloys. – Oxford: Woodhead Publishing, 2010. – P. 58–80. – ISBN 978-1-845-69945-1.

3. Miller P.D., Holladay J.W. Friction and wear properties of titanium // Wear. – 1958. – Vol. 2. – P. 133–140. – doi: 10.1016/0043-1648(58)90428-9.

4. Rabinowicz E. Friction properties of titanium and its alloys // Metal Progress. – 1954. – Vol. 65 (2). – P. 107–110.

5. Alam M.O., Haseeb A.S.M.A. Response of Ti–6Al–4V and Ti–24Al–11Nb alloys to dry sliding wear against hardened steel // Tribology International. – 2002. – Vol. 35, iss. 6. – P. 357–362. – doi: 10.1016/S0301-679X(02)00015-4.

6. Budinski K.G. Tribological properties of titanium alloys // Wear. – 1991. – Vol. 151, iss. 2. – P. 203–217. – doi: 10.1016/0043-1648(91)90249-T.

7. Sun R.L., Lei Y.W. Microstructure and wear resistance of laser clad layer of TiN on TC4 alloy // Journal of Tianjin Polytechnic University. – 2007. – Vol. 26, iss. 4. – P. 57–59.

8. Filip R., Sieniawski J., Pleszakov E. Formation of surface layers on Ti–6Al–4V titanium alloy by laser alloying // Surface Engineering. – 2006. – Vol. 22, iss. 1. – P. 53–57. – doi: 10.1179/174329406X84967.

9. Laser surface modification of titanium alloys – a review / Y.S. Tian, C.Z. Chen, D.Y. Wang, T.Q. Lei // Surface Review and Letters. – 2005. – Vol. 12, iss. 01. – P. 123–130. – doi: 10.1142/S0218625X0500686X.

10. Research progress on laser surface modification of titanium alloys / Y.S. Tian, C.Z. Chen, S.T. Li, Q.H. Huo // Applied Surface Science. – 2005. – Vol. 242, iss. 1–2. – P. 177–184. – doi: 10.1016/j.apsusc.2004.08.011.

11. Development of laser cladding wear-resistant coating on titanium alloys / R. Bao, H. Yu, C. Chen, B. Qi, L. Zhang // Surface Review and Letters. – 2006. – Vol. 13. – P. 645–654. – doi: 10.1142/S0218625X06008608.

12. Saleh A.F., Abboud J.H., Benyounis K.Y. Surface carburizing of Ti–6Al–4V alloy by laser melting // Optics and Lasers in Engineering. – 2010. – Vol. 48, iss. 3. – P. 257–267. – doi: 10.1016/j.optlaseng.2009.11.001.

13. Molian P.A., Hualun L. Laser cladding of Ti–6Al–4V with bn for improved wear performance // Wear. – 1989. – Vol. 130, iss. 2. – P. 337–352. – doi: 10.1016/0043-1648(89)90187-7.

14. Получение износостойких покрытий на титановых сплавах методом вневакуумной электронно-лучевой обработки / О.Г. Ленивцева, В.В. Самойленко, М.Г. Голковский, И.А. Батаев, Р.А. Достовалов // Обработка металлов (технология, оборудование, инструменты). – 2013. – № 3 (60). – С. 103–109.

15. Hardness improvement of TiB2/Ti surface-alloyed material fabricated by high-energy electron beam irradiation / J.C. Oh, K. Euh, S. Lee, Y. Koo, N.J. Kim // Scripta Materialia. – 1998. – Vol. 39, iss. 10. – P. 1389–1394. – doi: 10.1016/S1359-6462(98)00325-X.

16. Oh J.C., Choo D.-K., Lee S. Microstructural modification and hardness improvement of titanium-base surface-alloyed materials fabricated by high-energy electron beam irradiation // Surface and Coatings Technology. – 2000. – Vol. 127, iss. 1. – P. 76–85. – doi: 10.1016/S0257-8972(99)00664-7.

17. Kühnle T., Partes K. In-situ formation of titanium boride and titanium carbide by selective laser melting // Physics Procedia. – 2012. – Vol. 39. – P. 432–438. – doi: 10.1016/j.phpro.2012.10.058.

18. Baker T.N., Selamat M.S. Surface engineering of Ti–6Al–4V by nitriding and powder alloying using CW CO2 laser // Materials Science and Technology. – 2008. – Vol. 24, iss. 2. – P. 189–200. – doi: 10.1179/174328407X226563.

19. WCp/Ti–6Al–4V graded metal matrix composites layer produced by laser melt injection / Y. Chen, D. Liu, F. Li, L. Li // Surface and Coatings Technology. – 2008. – Vol. 202, iss. 19. – P. 4780–4787. – doi: 10.1016/j.surfcoat.2008.04.057.

20. Höche D., Schaaf P. Laser nitriding: investigations on the model system TiN. A review // Heat and Mass Transfer. – 2011. – Vol. 47, iss. 5. – P. 519–540. – doi: 10.1007/s00231-010-0742-z.

21. High-energy electron beam cladding of titanium and carbon on titanium alloy / O.G. Lenivtseva, O.A. Butylenkova, E.D. Golovin, M.G. Golkovsky // The 8th International Forum on Strategic Technology (IFOST 2013), Ulaanbaatar, Mongolia, 28 June – 1 July 2013. – Ulaanbaatar: MUST, 2013. – P. 152–155.

22. Structure and properties of titanium surface layers after electron beam alloying with powder mixtures containing carbon / O.G. Lenivtseva, I.A. Bataev, M.G. Golkovski, A.A. Bataev, V.V. Samoilenko, N.V. Plotnikova // Applied Surface Science. – 2015. – Vol. 355. – P. 320–326. – doi: 10.1016/j.apsusc.2015.07.043.

23. Ayers J.D., Schaefer R.J., Robey W.P. A laser processing technique for improving the wear resistance of metals // The Journal of The Minerals, Metals & Materials Society. – 1981. – Vol. 33, iss. 8. – P. 19–23. – doi: 10.1007/BF03339467.

24. Draper C.W., Ewing C.A. Laser surface alloying: a bibliography // Journal of Materials Science. – 1984. – Vol. 19, iss. 12. – P. 3815–3825. – doi: 10.1007/BF00980743.

25. Improvement of hardness and wear resistance in SiC/Ti–6Al–4V surface composites fabricated by high-energy electron beam irradiation / J.C. Oh, E. Yun, M.G. Golkovski, S. Lee // Materials Science and Engineering: A. – 2003. – Vol. 351, iss. 1–2. – P. 98–108. – doi: 10.1016/S0921-5093(02)00821-3.

26. Lee C.S., Oh J.C., Lee S. Improvement of hardness and wear resistance of (TiC, TiB)/Ti–6Al–4V surface-alloyed materials fabricated by high-energy electron-beam irradiation // Metallurgical and Materials Transactions A. – 2003. – Vol. 34, iss. 7. – P. 1461–1471. – doi: 10.1007/s11661-003-0258-y.

27. Yun E., Lee K., Lee S. Improvement of high-temperature hardness of (TiC, TiB)/Ti–6Al–4V surface composites fabricated by high-energy electron-beam irradiation // Surface and Coatings Technology. – 2004. – Vol. 184, iss. 1. – P. 74–83. – doi: 10.1016/j.surfcoat.2003.10.017.

28. Non-vacuum electron-beam boriding of low-carbon steel / I.A. Bataev, A.A. Bataev, M.G. Golkovsky, A.Y. Teplykh, V.G. Burov, S.V. Veselov // Surface and Coatings Technology. – 2012. – Vol. 207. – P. 245–253. – doi: 10.1016/j.surfcoat.2012.06.081.

29. Structure of surface layers produced by nonvacuum electron beam boriding / I.A. Bataev, A.A. Bataev, M.G. Golkovski, D.S. Krivizhenko, A.A. Losinskaya, O.G. Lenivtseva // Applied Surface Science. – 2013. – Vol. 284. – P. 472–481. – doi: 10.1016/j.apsusc.2013.07.121.

30. Вневакуумная электронно-лучевая наплавка углеродсодержащих порошковых смесей на заготовки из титана ВТ1-0 / О.Г. Ленивцева, И.А. Батаев, В.В. Иванцивский, Н.С. Белоусова, Е.Д. Головин, Т.А. Зимоглядова // Обработка металлов (технология, оборудование, инструменты). – 2013. – № 4 (61). – С. 49–57.

31. In situ technique for synthesizing (TiB+TiC)/Ti composites / X. Zhang, W. Lü, D. Zhang, R. Wu, Y. Bian, P. Fang // Scripta Materialia. – 1999. – Vol. 41, iss. 1. – P. 39–46. – doi: 10.1016/S1359-6462(99)00087-1.

32. Microstructural characterization of titanium matrix composite coatings reinforced by in situ synthesized TiB + TiC fabricated on Ti6Al4V by laser cladding / J. Li, Z. Yu, H. Wang, M. Li // Rare Metals. – 2010. – Vol. 29, iss. 5. – P. 465–472. – doi: 10.1007/s12598-010-0151-y.

33. Study on microstructure of laser in situ formation of TiBX and TiC titanium composite coatings / J. Liang, S. Chen, C. Liu, F. Liu // Materials Science Forum. 2011. – Vol. 686. – P. 646–653. – doi: 10.4028/www.scientific.net/MSF.686.646.

34. Zhang Y., Sun J., Vilar R. Characterization of (TiB + TiC)/TC4 in situ titanium matrix composites prepared by laser direct deposition // Journal of Materials Processing Technology. – 2011. – Vol. 211, iss. 4. – P. 597–601. – doi: 10.1016/j.jmatprotec.2010.11.009.

35. Handbook of ternary alloy phase diagrams / P. Villars, A. Prince, H. Okamoto, eds. – Materials Park, Ohio: ASM International, 1994. – ISBN 10: 0871705265. – ISBN 13: 9780871705266.

36. Microstructural characterization of TiB in in situ synthesized titanium matrix composites prepared by common casting technique / W. Lu, D. Zhang, X. Zhang, R. Wu, T. Sakata, H. Mori // Journal of Alloys and Compounds. – 2001. – Vol. 327, iss. 1–2. – P. 240–247. – doi: 10.1016/S0925-8388(01)01445-1.

37. Evolution of microstructure and phases in in situ processed Ti–TiB composites containing high volume fractions of TiB whiskers / S.S. Sahay, K.S. Ravichandran, R. Atri, B. Chen, J. Rubin // Journal of Materials Research. – 1999. – Vol. 14, iss. 11. – P. 4214–4223. – doi: 10.1557/JMR.1999.0571.

38. TEM characterization of symbiosis structure of in situ TiC and TiB prepared by reactive processing of Ti–B4C / D.R. Ni, L. Geng, J. Zhang, Z.Z. Zheng // Materials Letters. – 2008. – Vol. 62, iss. 4–5. – P. 686–688. – doi: 10.1016/j.matlet.2007.06.033.

39. Kooi B.J., Pei Y.T., Hosson J.T.M. de. The evolution of microstructure in a laser clad TiB–Ti composite coating // Acta Materialia. – 2003. – Vol. 51, iss. 3. – P. 831–845. – doi: 10.1016/S1359-6454(02)00475-5.

40. Grain refinement of cast titanium alloys via trace boron addition / S. Tamirisakandala, R.B. Bhat, J.S. Tiley, D.B. Miracle // Scripta Materialia. – 2005. – Vol. 53, iss. 12. – P. 1421–1426. – doi: 10.1016/j.scriptamat.2005.08.020.
Просмотров: 3248