Obrabotka metallov

OBRABOTKA METALLOV

METAL WORKING AND MATERIAL SCIENCE
Print ISSN: 1994-6309    Online ISSN: 2541-819X
English | Русский

Recent issue
Vol. 27, No 3 July – September 2025

Equilibrium Phase Diagram of the Zn–Ag Alloy

Vol. 20, No 3 July – September 2018
Authors:

Korolev Alexey,
Maltsev Gennagy Ivanovich,
Timofeev Konstantin Leonidovich,
Lobanov Vladimir
DOI: http://dx.doi.org/10.17212/1994-6309-2018-20.3-72-84
Abstract

Object of research: when refining rough lead from metallic zinc impurities, a silver foam (SF) containing lead, zinc and silver is formed on the surface of the liquid melt. To separate the components of the silver foam it is possible to apply vacuum distillation – environmentally friendly and high-performance technologies in pyrometallurgy. A preliminary analysis of the behavior of the polymetallic alloy in the process of distillation, in particular, the composition of the products of sublimation and the degree of separation of the alloy components at specified temperature and pressure is carried out using calculated equilibrium phase diagrams VLE (vapor liquid equilibrium), for example, the temperature–composition “T– x”, pressure–composition “P–x”. Objective: the calculation of the equilibrium “gas–liquid” for binary Zn-Ag alloy. Methods and approaches: when constructing the VLE, the activity coefficients of the Zn-Ag alloy components are calculated according to the volumetric model of molecular interaction molecular interaction volume model (MIVM). Novelty: the original information about the influence of temperature and residual pressure in the system on the degree of distillation and separation of metals from Zn-Ag alloys of variable composition is obtained. Main results: saturated steam pressures for Zn (5.79.102–3.104.104) and Ag (5.30.10–9…5.05 × 10–5) were calculated in the temperature range 823…1073 K. High values of  = 1.09.1011–6.14 × 108 ratio and separation coefficient logßZn = 8.318…12.180 create theoretical prerequisites for separation, when zinc suggest the possibility of separate extraction by sublimation of the zinc in gas phase (βZn> 1) and the concentration of silver in the liquid phase. The increase in the content of molar fractions of silver in the alloy from 0.1 to 0.9 and the system temperature from 823 to 1073 K leads to an increase in the molar fraction of silver in the gas phase from 1.10–15 to 8.5 × 10–7. The values of thermodynamic functions are calculated for the equilibrium state of the liquid and gas phases of the Zn-Ag system:  = 0.08…1.36 kJ/mol;  = 1.52…5.73 kJ/mol;  = 1.57…5.38 J/mol.К are determined for the interface of liquid–gas Zn–Ag alloy. Practical relevance: equilibrium phase diagrams VLE Zn-Ag alloy is used in the preliminary stages of designing of experimental-industrial equipment for vacuum distillation technology, and to select ranges of temperature and pressure in the system with the purpose of obtaining a Zn- and Ag-containing products of a given composition.


Keywords: Diagram, Model, Vacuum, Alloy, Distillation, Zinc, Silver, Separation, Concentrate

References

1. Chen W.M., Yang B., Chai L., Min X., Dai Y., Zhang C. Vacuum distillation refining of crude lithium (I). Transactions of Nonferrous Metals Society of China, 2001, vol. 11, no. 6, pp. 937–941.



2. Kong X.-f., Yang B., Xiong H., Kong L.-x. Thermodynamics of removing impurities from crude lead by vacuum distillation refining. Transactions of Nonferrous Metals Society of China, 2014, vol. 24, iss. 6, pp. 1946–1950. doi: 10.1016/S1003-6326(14)63275-1.



3. Barbin N., Terentiev D., Alexeev S., Barbina T. Thermodynamic modeling of the Pb + Bi melt evaporation under various pressures and temperatures. Computational Materials Science, 2013, vol. 66, pp. 28–33. doi: 10.1016/j.commatsci.2012.06.013.



4. Dai Y.N. Vacuum distillation and separation of Pb-Sn alloy. Nonferrous Metal, 1977, vol. 9, pp. 24–30.



5. Dai Y.N. Vacuum distillation of Pb-Sn alloy. Nonferrous Metal, 1980, vol. 32, pp. 73–79.



6. Dai Y.N., He A.P. Vacuum distillation of lead-tin alloy. Journal of Kunming Institute of Technology, 1989, iss. 3, pp. 16–27.



7. Volodin V.N., Isakova R.A., Khrapunov V.E. Liquid-vapour phase equilibrium in metal systems and parameters of vacuum distillation processes forecasting. Non-ferrous Metals, 2011, no. 1, pp. 38–42.



8. Morachevskii A.G., ed. Termodinamika ravnovesiya zhidkost' ? par [Thermodynamics of liquid – vapor equilibrium]. Leningrad, Khimiya Publ., 1989. 344 p.



9. Volodin V.N., Khrapunov V.E., Burabaeva N.M., Marki I.A. Liquid-vapor phase equilibrium in the stratifying thallium-zinc system. Russian Journal of Non-Ferrous Metals, 2010, vol. 51, iss. 3, pp. 205–211. doi: 10.3103/S1067821210030028.



10. Zhang Y., Deng J., Jiang W., Mei Q., Liu D. Application of vacuum distillation in refining crude lead. Vacuum, 2018, vol. 148, pp. 140–148. doi: org/10.1016/j.vacuum.2017.11.004.



11. Deng J., Zhang Y., Jiang W., Mei Q., Liu D. Harmless, industrial vacuum-distillation treatment of noble lead. Vacuum, 2018, vol. 149, pp. 306–312. doi: 10.1016/j.vacuum.2018.01.017.



12. Ding J.C., Zhang T.F., Mane R.S., Kim K.-H., Kang M.C., Zou C.W., Wang Q.M. Low-temperature deposition of nanocrystalline Al2O3 films by ion source-assisted magnetron sputtering. Vacuum, 2018, vol. 149, pp. 284–290. doi: 10.1016/j.vacuum.2018.01.009.



13. Chen S., Fu D., Luo H., Wang Y., Teng J., Zhang H. Hot workability of PM 8009Al/Al2O3 particle-reinforced composite characterized using processing maps. Vacuum, 2018, vol. 149, pp. 297–305. doi: 10.1016/j.vacuum.2018.01.001.



14. Gerold V., ed. Materials science and technology: a comprehensive treatment. Vol. 1. Structure of solids. Weinheim, VCH, 1993. 621 p.



15. Afanasіeva I.A., Bobkov V.V., Gritsyna V.V., Logachev Yu.E., Okseniuk I.I., Skrypnyk A.A., Shevchenko D.I. On excited particle formation in crossed Е×Н fields. Vacuum, 2018, vol. 149, pp. 124–128. doi: 10.1016/j.vacuum.2017.12.027.



16. Shi M., Zhu C., Wei M., He Z., Lu M. Dy3+-, Tb3+-, and Eu3+-activated NaCa4(BO3)3 phosphors for lighting based on near ultraviolet light emitting diodes. Vacuum, 2018, vol. 149, pp. 343-349. doi: 10.1016/j.vacuum.2018.01.014.



17. Korolev A.A., Krayukhin S.A., Maltsev G.I. Ravnovesnye sistemy «gaz–zhidkost'» dlya splava Sb–Ag pri vakuumnoi distillyatsii [Equilibrium systems "gas–liquid" for the alloy Sb–Ag during vacuum distillation]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2017, no. 4 (77), pp. 68–83. doi: 10.17212/1994-6309-2017-4-68-83.



18. Korolev A.A., Maltsev G.I., Timofeev K.L., Lobanov V.G. Pererabotka sur'myanisto-olovyannykh kontsentratov vakuumnoi distillyatsiei [Processing of antimony-tin concentrates by vacuum distillation]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2018, vol. 20, no. 1, pp. 6–21. doi: 10.17212/1994-6309-2018-20.1-6-21.



19.  Chakraborty M., Bhattacharyya S. Air-annealed growth and characterization of Cd1-xZnxTe thin films grown from CdTe/ZnTe/CdTe multi-stacks. Vacuum, 2018, vol. 149, pp. 156–167. doi: 10.1016/j.vacuum.2017.12.029.



20. Liang L.,  Dachun L.,  Heli W., Kaihua L.,  Juhai D., Wenlong J. Removal of chloride impurities from titanium sponge by vacuum distillation. Vacuum, 2018, vol. 152, pp. 166–172. doi: 10.1016/j.vacuum.2018.02.030.



21. Trigueiro J., Bundaleski N.,  Teodoro O.M.N.D. Monitoring dynamics of different processes on rutile TiO2(110) surface by following work function change. Vacuum, 2018, vol. 152, pp. 327–329. doi: 10.1016/j.vacuum.2018.03.049.



22. Deng L., Lu S., Tang B., Lin Y. Effect of Si on thermal stability of Nb-22.5Cr alloy. Vacuum, 2018, vol. 152, pp. 312–318. doi: 10.1016/j.vacuum.2018.03.046.



23. Wang L., Guo P., Zhao P., Kong L., Tian Z. Thermodynamic and experimental study of C-S system and C-S-Mo system. Vacuum, 2018, vol. 152, pp. 330–336. doi: 10.1016/j.vacuum.2018.03.053.



24. Baránková H., Bardos L., Silins K., Bardos A. Reactive deposition of TiN films by magnetron with magnetized hollow cathode enhanced target. Vacuum, 2018, vol. 152, pp. 123–127. doi: 10.1016/j.vacuum.2018.03.010.



25. Zamchiy A.O., Baranov E.A., Merkulova I.E., Volodin V.A., Sharafutdinov M.R., Khmel S.Ya. Effect of annealing in oxidizing atmosphere on optical and structural properties of silicon suboxide thin films obtained by gas-jet electron beam plasma chemical vapor deposition method. Vacuum, 2018, vol. 152, pp. 319–326. doi: 10.1016/j.vacuum.2018.03.055.



26. Hu S.P., Hu T.Y., Lei Y.Z., Song X.G., Liu D., Cao J., Tang D.Y. Microstructural evolution and mechanical properties of vacuum brazed Ti2AlNb alloy and Ti60 alloy with Cu75?P?t filler metal. Vacuum, 2018, vol. 152, pp. 340–346. doi: 10.1016/j.vacuum.2018.03.054.



27. Korolev A.A., Krayukhin S.A., Maltsev G.I. Fazovye ravnovesiya v sisteme Pb–Ag pri pirometallurgicheskoi vozgonke [Phase equilibria in the system Pb–Ag in the pyrometallurgical fuming]. Vestnik YuUrGU. Seriya: Metallurgiya = Bulletin of the South Ural State University. Series: Metallurgy, 2017, т. 17, no. 2, pp. 22–33. doi: 10.14529/met170203.



28. Korolev A.A., Krayukhin S.A., Maltsev G.I. Ravnovesnye sistemy gaz – zhidkost' dlya splava Pb–Sb pri vakuumnoi distillyatsii [The equilibrium of the system gas-liquid for alloy Pb-Sb in vacuum distillation]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie = Bulletin PNRPU. Mechanical engineering, materials science, 2017, т. 19, no. 3, pp. 75–99. doi: 15593/2224-9877/2017.3.05.



29. Korolev A.A., Krayukhin S.A., Maltsev G.I. Fazovye ravnovesiya dlya Pb–Zn–Ag splava pri vakuumnoi distillyatsii [Phase equilibrium for Pb–Zn–Аg alloy during vacuum distillation]. Rasplavy = Melts, 2017, no. 5, pp. 435–450.

For citation:

Korolev A.A., Maltsev G.I., Timofeev K.L., Lobanov V.G. Equilibrium phase diagram of the Zn–Ag alloy. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2018, vol. 20, no. 3, pp. 72–84 . doi:  10.17212/1994-6309- 2018-20.3-72-84. (In Russian).

Views: 2950