Introduction: One of the most important tasks of locomotive repair production of Russian Railways is to increase the service life of the rolling stock: locomotives and wagons. This paper discusses the use of a new method of repair of collector-brush unit of the electric locomotive, which will improve the switching characteristics, improve the reliability of electric traction motors (ETM) and increase the operating time of the entire electric locomotive as a whole. The purpose of the work is to improve the reliability and service life of ETM of electric locomotives. Methods: To reduce the coefficient of friction between the collector plates and brushes and increase the service life of the collector-brush unit, it is proposed to carburize the surface standing copper plates of the collector by means of electrical discharge machining (EDM). The method of electrical discharge machining, in comparison with traditional mechanical methods of repair of electric traction motors, is more preferable, because it allows increasing the wear resistance of the contact surface of the collector plates, which provides the required performance properties and increases the reliability of the collector-brush unit. Results: The article proposes a technological process of repair of the electric motor collector, characterized by the use of electrical discharge machining with the formation of a carbon surface layer on the contact surface of the collector. A device for the formation of a carbon layer on the working surface of the collector of electric traction motors by means of electrical discharge machining is presented. The results of atomic emission spectral analysis of carbonized copper sample, which showed that the proportion of carbon in the carbonized copper sample increased by 0.1% compared to the copper plate, not subjected to electrical discharge machining, are given. An evaluation model of the dependence of the depth of the composite layer on the voltage applied to the electrodes is presented. Discussion: the evaluation model Presented in the article allows: 1) to make a preliminary estimate of the dependence of the depth and thickness of the layers forming the composite structure of the surface subjected to EDM on the voltage applied to the electrodes; 2) based on this calculation, to conduct an experimental EDM of the collector surface of the ETM with the adjustment of the thickness and depth of the layers by means of the described technique; 3) to experimentally determine the processing modes for the samples.
1. Rasporyazhenie prezidenta OAO "RZhD" ot 17.01.2005 № 3r "O sisteme tekhnicheskogo obsluzhivaniya i remonta lokomotivov" [The order of the President of JSC “Russian Railways” dated 17.01.2005 N 3r “About system of maintenance and repair of locomotives”]. Moscow, JSC “Russian Railways” Publ., 2005. 8 p.
2. Rasporyazhenie prezidenta OAO "RZhD" ot 13.01.2006 № 181 "Dopolnitel'nye mery po povysheniyu urovnya obespecheniya bezopasnosti dvizheniya v lokomotivnom khozyaistve zheleznykh dorog OAO "RZhD" [The order of the President of JSC “Russian Railways” dated 13.01.2006 N 181 “Additional measures to improve the level of traffic safety in the locomotive industry of Railways of JSC “Russian Railways”]. Moscow, JSC “Russian Railways” Publ., 2006. 7 p.
3. Poruchenie pervogo vitse-prezidenta OAO "RZhD" ot 26.08.2010 № P-VM-120 "Ob optimizatsii struktury i povyshenii effektivnosti lokomotivoremontnogo kompleksa" [The order of the first Vice-President of JSC “Russian Railways” dated 26.08.2010 N P-VM-120 “About optimization of structure and increase of efficiency of the locomotive repair complex”]. Moscow, JSC “Russian Railways” Publ., 2010. 6 p.
4. Avilov V.D., Petrov P.G., Moiseenok E.M. K voprosu o povyshenii kommutatsionnoi ustoichivosti kollektornykh elektricheskikh mashin postoyannogo toka [Increasing of switching stability on dc machines]. Izvectiya Transsiba = Journal of Transsib Railway Studies, 2010, no. 2 (2), pp. 2-6. Available at: http://izvestia-transsiba.ru/images/journal_pdf/2010-2(2).pdf (accessed 01.02.2019).
5. Stepanov Yu.S., Sotnikov V.I., Tkachenko A.N. Eksperimental'noe issledovanie protsessa kombinirovannoi obrabotki tocheniem i almaznym vyglazhivaniem tortsovykh poverkhnostei detalei iz medi [Experimental study of combined treatment of turning and diamond caress end surface of components made of copper]. Uprochnyayushchie tekhnologii i pokrytiya = Strengthening Technologies and Coatings, 2012, no. 8, pp. 43-48. Available at: http://www.mashin.ru/files/2012/utp8_12.pdf (accessed 01.02.2019).
6. Fel'dshtein E.E., Kardapolova M.A., Gaida R., Khorodyski B., Kaval'chuk O.V. [Tribological properties of electrospark-deposited and further laser-hardened coatings]. Journal of Friction and Wear, 2013, vol. 34, no. 2, pp. 137–141. doi: 10.3103/S1068366613020049. Translated from Trenie i iznos, 2013, vol. 34, no. 2, pp. 175–180.
7. Safonova M.N., Tarasov P.P., Syromyatnikova A.S., Fedotov A.A. Effect of nanodispersed diamond additions on properties of composite materials based on bronze. Metal Science and Heat Treatment, 2013, vol. 55, iss. 5–6, pp. 229–231. doi: 10.1007/s11041-013-9610-z. Translated from Metallovedenie i termicheskaya obrabotka metallov, 2013, vol. 55, no. 5 (695), pp. 3–6.
8. Koeffitsienty treniya pokoya i skol'zheniya dlya par naibolee rasprostranennykh materialov [Coefficients of friction of rest and slip for pairs of the most common materials]. Available at: http://www.dpva.info/Guide/GuidePhysics/Frication/FrictionToVariousPairs (accessed 01.02.2019).
9. Kuznetsov A.A., Belan D.Yu., Otradnova A.O., Otradnova T.V., Otradnova I.V. Ustanovka dlya elektroiskrovoi obrabotki s pozitsionirovaniem elektrodov otnositel'no poverkhnosti kollektora elektricheskoi mashiny [Installation for electrical discharge machining with the positioning of the electrodes relative to the surface of the collector electric machines]. Patent RF, no. 137639, 2014.
10. Smolentsev V.P. Elektrofizicheskie i elektrokhimicheskie metody obrabotki materialov. V 2 t. T. 1. Obrabotka materialov s primeneniem instrumenta [Electrophysical and electrochemical methods of materials processing. In 2 vol. Vol. 1. Processing of materials with the use of tools]. Moscow, Vysshaya shkola Publ., 1983. 247 p.
11. Sandeep K. Current research trends in electrical discharge machining: a review. Research Journal of Engineering Sciences, 2013, vol. 2 (2), pp. 56–60. Available at: https://pdfs.semanticscholar.org/93e1/7a1521161a361dc1600aa61618166f8de5e7.pdf (accessed 01.02.2019).
12. Nishiwaki N., Hori S., Natsu W. Detection of electric discharge machining state by using ultrasonic technique. 17th World Conference on Nondestructive Testing, Shanghai, China, 25–28 October 2008, pp. 1–6. Available at: https://www.ndt.net/article/wcndt2008/papers/128.pdf (accessed 01.02.2019).
13. Lee H., Yahya A., Khamis N. H., Samion S. Nonlinear servomotor in single pulse simulation of electrical discharge machining system modeling. Indonesian Journal of Electrical Engineering and Computer Science, 2016, vol. 1, no. 2, pp. 319–328. Available at: https://www.researchgate.net/publication/299433312_Nonlinear_Servomotor_in_Single_Pulse_Simulation_of_Electrical_Discharge_Machining_System_Modeling (accessed 01.02.2019).
14. Equbal A., Sood A.K. Electrical discharge machining: an overview on various areas of research. Journal of Manufacturing and Industrial Engineering (MIE), 2014, vol. 13, no. 1–2, pp. 1–6. Available at: http://www.qip-journal.eu/index.php/MIE/article/view/339. (accessed 01.02.2019).
15. Choudhary A.K., Chhabra K.K. Effect of control parameters in electrical discharge machining – a review. International Journal of R&D in Engineering Science and Management, 2014, vol. 1, no. 3, pp. 72–76. Available at: http://www.rndpublications.com/wp-content/uploads/2014/10/Paper_1oct.pdf (accessed 01.02.2019).
16. Gupta S., Singh G. A review on fabrication of copper graphite composite material & its mechanical properties. International Journal of Advance Research and Innovative Ideas in Education, 2017, vol. 3, iss. 3, pp. 537–543. Available at: http://www.ijariie.com/PastIssueSelected.aspx?VolumeId=18 (accessed 01.02.2019).
17. Ojha K., Garg R.K., Singh K.K. MRR improvement in sinking electrical discharge machining: a review. Journal of Minerals & Materials Characterization & Engineering, 2010, vol. 9, no. 8, pp. 709–739. Available at: http://file.scirp.org/pdf/JMMCE20100800004_52519296.pdf (accessed 01.02.2019).
18. Hsu W.-H., Chien W.-T. Effect of electrical discharge machining on stress concentration in titanium alloy holes. Materials, 2016, vol. 9, iss. 12. doi: 10.3390/ma9120957.
19. Reddy C.B., Reddy G.J., Reddy C.E. Growth of electrical discharge machining and its applications – a review. International Journal of Engineering Research and Development, 2012, vol. 4, iss. 12, pp. 13–22. Available at: http://www.ijerd.com/paper/vol4-issue12/C04121322.pdf (accessed 01.02.2019).
20. Singh A., Grover N.K., Sharma R. Recent advancement in electric discharge machining, a review. International Journal of Modern Engineering Research, 2012, vol. 2, iss. 5, pp. 3815–3821. Available at: http://www.ijmer.com/papers/Vol2_Issue5/EN2538153821.pdf (accessed 01.02.2019).
21. Banu A., Ali M.Y. Electrical discharge machining (EDM): a review. International Journal of Engineering Materials and Manufacture, 2016, no. 1 (1), pp. 3–10. doi: 10.26776/ijemm.01.01.2016.02.
Titov Yu.V., Belan D.Yu., Toder G.B., Otradnova A.A. Improving the reliability of locomotive traction motors due to the use of electrical discharge machining of collector plates. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2019, vol. 21, no. 1, pp. 16–24. doi 10.17212/1994-6309-2019-21.1-16-24. (In Russian).