Introduction. In various industries, heat-treated structural materials with enhanced physical and mechanical properties are increasingly used. Such materials include corrosion-resistant steels. These steels are used in mechanical engineering for the manufacture of parts and components of machines and mechanisms, in the petrochemical and gas processing industries, in the production and processing of food products, in pharmaceuticals for the manufacture of medical implements and equipment, and in medicine for the manufacture of prostheses. In modern production, along with traditional methods of intensification of technological operations, a direction is developing to increase the efficiency of machining by temporarily reducing the strength of the processed material, changing the mechanism of contact processes that occur on the working surfaces of tools and in the contact surface layer of the processed work pieces. In this case, combined and hybrid processing technologies are used. For processing complex products, it is possible to use a hybrid technology of electrochemical processing, in which periodic electrochemical dressing of the diamond wheel is carried out by changing the polarity of the current flowing along the chain directly during grinding without using an additional tool dressing chain. One of the main problems hindering the wide practical application of hybrid and combined technologies in industry is that to implement these technologies, equipment is needed that combines the main type of machining with additional energy sources, which can operate in automatic mode. This leads to the need to create special control systems for organizing hybrid and combined technologies in automated production conditions. Purpose of work is to increase the efficiency of hybrid technology for the electrochemical treatment of corrosion-resistant steels due to automatic control of the change in current polarity. Results and discussion. To accomplish this task, a programmable device for automatically controlling the reversal of current polarity in an electric circuit is developed and manufactured. It can implement two operating modes in turn. The first mode is electrochemical grinding of the part. The second mode is the electrochemical dressing of the diamond wheel. The study of the process of electrochemical grinding of samples made of 12Kh18N10T steel and electrochemical dressing of a diamond tool using a device for automatically controlling the change in current polarity is carried out on an original bench. To assess the quality parameters of the treated surface, the microhardness of the processed samples is measured on an HMV-G21S microhardness meter, the microrelief of the samples obtained using an AFM Solver Next scanning probe microscope is measured, and the surface roughness is measured on a Model 130 profilometer. Analysis of the results of the study suggests that the use of programmable device allows automating the process of controlling the change in polarity of the electric current without reducing the quality of surface grinding in hybrid technology of electrochemical treatment.
1. Vladimirova Yu.O., Shalunov E.P., Illarionov I.E. Raschet zagotovki porshnya iz ob"emnogo nanostrukturnogo materiala na osnove medi dlya mashin lit'ya pod davleniem [Calculation of plunger blank made of copper based volumetric nanostructured material for thе die casting machines]. Teoriya i tekhnologiya metallurgicheskogo proizvodstva = Theory and Technology of Metallurgical Production, 2019, no. 2, pp. 29–36.
2. Shalunov E.P., Smirnov V.M., Uryanskii I.P. Iznosostoikie podshipniki skol'zheniya iz nanostrukturnykh materialov dlya moshchnykh elektrodvigatelei [Wear-resistant sliding bearings using nanostructured materials for powerful electric motors]. Vestnik Chuvashskogo universiteta = Bulletin of the Chuvash University, 2015, no. 1, pp. 131–139.
3. Soler Ya.I., Gaisin S.N., Kazimirov D.Yu. Prognozirovanie mikrorel'efa shlifovannykh detalei peremennoi zhestkosti iz stali 13Kh15N4AM3 pri mnogoprokhodnom s"eme pripuska [Prediction of the microrelief of polished parts of variable stiffness from steel 13X15H4AM3 with multi-pass stock removal]. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta = Proceedings of Irkutsk State Technical University, 2006, no. 1 (25), pp. 64–70.
4. Grigorenko V.B. Applications of corrosion-resistant steel. Steel in Translation, 2014, vol. 44, iss. 1, pp. 80–85. DOI: 10.3103/S0967091214010070.
5. Rychkov D.A., Yanyushkin A.S., Lobanov D.V., Bazarkina V.V. Sovershenstvovanie tekhnologii formoobrazovaniya vysokoprochnykh steklovoloknistykh kompozitsionnykh materialov na polimernoi osnove [Perfection of technology of formation of the form of high-strength glass-fiber composite materials on the polymeric basis]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2012, no. 3 (56), pp. 150–153.
6. Avrelkin V.A., Kuptsov M.V. [The use of improved technologies developed by scientists of the Volga region on the machine building enterprises of the Chuvash Republic]. Innovatsionnye tekhnologii v metalloobrabotke: Vserossiiskaya nauchno-prakticheskaya zaochnaya konferentsiya s mezhdunarodnym uchastiem [Proceedings of the All-Russian scientific-practical conference with international participation "Innovative technologies in metal processing"], Ulyanovsk, November 25, 2018. Ulyanovsk, 2019, pp. 158–163. (In Russian).
7. Vasil’ev E.V., Popov A.Y., Bugai I.A., Nazarov P.V. Axial tool for the machining of composites. Russian Engineering Research, 2015, vol. 35, pp. 771–772. DOI: 10.3103/S1068798X1510024X.
8. Nosenko V.A., Tyshkevich V.N., Orlov S.V., Sarazov A.V. Ploskoe shlifovanie tortsov kolets krupnogabaritnykh podshipnikov s trebuemym kachestvom poverkhnosti [Flat grinding of big bearing races end with the demanded quality of a surface]. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Mashinostroenie = Bulletin of the SUSU. Series "Mechanical Engineering Industry", 2014, vol. 14, no. 4, pp. 67–78.
9. Vereshchagina A.S., Voznyakovsky A.P., Grigorieva T.F., Kirillov O.N., Kozlov A.M., Kozlov A.A., Liopo V.A., Mandrykin A.V., Mokritsky B.Ya., Morozova A.V., Ovchinnikov E.V., Panaioti V.A., Petreshin D.I., Popov S.A., Prushak D.A., Ryazantsev A.Yu., Skrygin O.V., Smolentsev V.P., Struk V.A., Sianov S.Yu., Fedonin O.N., Khandozhko A.V., Eisymont E.I. Progressivnye mashinostroitel'nye tekhnologii, oborudovanie i instrumenty. T. 5 [Advanced engineering techniques, equipment and tools. Vol. 5]. Moscow, Spektr Publ., 2015. 464 p. ISBN 978-5-4442-0088-9.
10. Chesov Yu.S., Ivancivsky V.V., Ptitsyn S.V. Tekhnologiya, oborudovanie i instrument dlya finishnykh operatsii [Technology, equipment and tools for finishing operations]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2001, no. 1 (12), pp. 52–54.
11. Skeeba V.Yu., Ivancivsky V.V., Lobanov D.V., Zhigulev A.K., Skeeba P.Yu. Integrated processing: quality assurance procedure of the surface layer of machine parts during the manufacturing step “diamond smoothing". IOP Conference Series: Materials Science and Engineering, 2016, vol. 125, iss. 1, p. 012031. DOI: 10.1088/1757-899X/125/1/012031.
12. Skeeba V.Yu., Ivancivsky V.V. Hybrid metal working equipment: improving the effectiveness of the details processing under the integration of surface quenching and abrasive grinding. Novosibirsk, NSTU Publ., 2018. 312 p. ISBN 978-5-7782-3690-5.
13. Nosenko V.A., Zhukov V.K., Vasil’ev A.A., Nosenko S.V. Deep grinding of incomplete-cycle surfaces, with periodic straightening of the wheel. Russian Engineering Research, 2008, vol. 28, pp. 442–449. DOI: 10.3103/S1068798X08050109.
14. Popov V.Yu., Arkhipov P.V., Rychkov D.A. Adhesive wear mechanism under combined electric diamond grinding. MATEC Web of Conferences, 2017, vol. 129, p. 01002. DOI: 10.1051/matecconf/201712901002.
15. Bratan S., Roshchupkin S., Revenko D. Probabilistic approach for modeling electroerosion removal of grinding wheel bond. Procedia Engineering, 2017, vol. 206, pp. 1426–1431. DOI: 10.1016/j.proeng.2017.10.656.
16. Bratan S.M., Bogutskii V.B., Novoselov Yu.K., Roshchupkin S.I. Modelirovanie protsessa stokhasticheskogo vzaimodeistviya instrumenta i zagotovki na operatsiyakh shlifovaniya [Process simulation of tool and blank stochastic interaction in grinding operations]. Naukoemkie tekhnologii v mashinostroenii = Science Intensive Technologies in Mechanical Engineering, 2017, no. 5 (71), pp. 9–18.
17. Nosenko V.A., Nosenko S.V. Deep grinding of titanium alloy with continuous wheel correction. Russian Engineering Research, 2010, vol. 30, pp. 1124–1128. DOI: 10.3103/S1068798X10110110.
18. Sekletina L.S., Medvedeva O.I., Gartfel'der V.A., Yanyushkin A.R. Formirovanie poverkhnostnykh plenok pri shlifovanii tverdykh splavov krugami na tokoprovodyashchikh svyazkakh [Formation of surface films at grinding of hard alloys by wheels on current-conductive bindings]. Nauka i tekhnika Kazakhstana = Science and Technology of Kazakhstan, 2018, no. 3, pp. 96–106.
19. Razhkovskii A.A., Kisel' A.G., Fedorov A.A., Rechenko D.S. Vliyanie SOZh na moment treniya pri obrabotke rezaniem stali U8 [Lubricant and cooling liquid influence at the moment of processing by U8 steel cutting]. Omskii nauchnyi vestnik = Omsk Scientific Bulletin, 2013, no. 2 (120), pp. 111–114.
20. Kozlov A.M., Kozlov A.A. Shaping the surface topology of cylindrical components by means of an abrasive tool. Russian Engineering Research, 2009, vol. 29, pp. 743–746. DOI: 10.3103/S1068798X09070223.
21. Smirnov V.M., Timofeev D.A., Shalunov E.P. [Dispersion strengthened sheaf on the basis of powder copper for the diamond tool]. Materialy II-oi Mezhdunarodnoi nauchno-prakticheskoi konferentsii " Sovremennye tekhnologii v mashinostroenii i liteinom proizvodstve " [Proceedings of the II International Scientific and Practical Conference "Modern Technologies in Mechanical Engineering and Foundry"]. Cheboksary, 2016, pp. 317–320. (In Russian).
22. Bratan S., Roshchupkin S., Novikov P. Modeling the grinding wheel working surface state. Procedia Engineering, 2017, vol. 206, pp. 1419–1425. DOI: 10.1016/j.proeng.2017.10.655.
23. Soler Ya.I., Kazimirov D.Yu., Gaisin S.N. SAPR optimizatsii chistovogo shlifovaniya ploskikh detalei 13Kh15N4AM3 peremennoi zhestkosti po kriteriyu sherokhovatosti [CAD optimization of fine grinding of flat parts 13X15H4AM3 of variable stiffness according to the roughness criterion]. Novye materialy i tekhnologii v mashinostroenii = New materials and technologies in mechanical engineering, 2005, no. 4, pp. 127–134.
24. Soler Ya.I., Kazimirov D.Yu., Prokop'eva A.V. Optimizing the grinding of high-speed steel by wheels of cubic boron nitride. Russian Engineering Research, 2007, vol. 27, no. 12, pp. 916–919. DOI: 10.3103/S1068798X07120180.
25. Popov V., Rychkov D., Arkhipov P. Defects in diamonds as the basic adhesion grinding. MATEC Web of Conferences, 2017, vol. 129, p. 01003. DOI: 10.1051/matecconf/201712901003.
26. Arkhipov P.V., Potapova G.E. Tverdosplavnye materialy i metody ikh obrabotki [Carbide materials and methods for their processing]. Mekhaniki XXI veku = Mechanics of the XXI century, 2012, no. 11, pp. 220–222.
27. Salov P.M., Tsai V.N., Saikin S.S., Yurpalov D.A., Vinogradova T.G., Mulyukhin N.V., Andreeva E.A., Antonova E.V., Salova D.P. Deformatsii v tekhnologicheskoi sisteme pri shlifovanii [Strain in grinding process in the system]. Nauchno-tekhnicheskii vestnik Povolzh'ya = Scientific and Technical Volga region Bulletin, 2016, no. 3, pp. 44–46.
28. Borisov M.A., Lobanov D.V., Yanyushkin A.S. Gibridnaya tekhnologiya elektrokhimicheskoi obrabotki slozhnoprofil'nykh izdelii [Hybrid technology of electrochemical processing of complex profiles]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2019, vol. 21, no. 1, pp. 25–34. DOI: 10.17212/1994-6309-2019-21.1-25-34.
29. Malyshev V.I., Levashkin D.G., Selivanov A.S. Avtomatizatsiya gibridnykh i kombinirovannykh tekhnologii na osnove modernizatsii stanochnogo oborudovaniya i vybora kinematicheskikh svyazei [Hybrid and combined technologiesautomation are based on CNC – machine tool equipment modernization and kinematical connections choice]. Vektor nauki Tol'yattinskogo gosudarstvennogo universiteta = Vector of sciences. Togliatti State University, 2010, no. 3, pp. 70–74.
30. Borisov M.A., Mishin V.A. Vliyanie prodolzhitel'nosti impul'sov toka na intensivnost' elektrokhimicheskogo shlifovaniya [The effect of current pulse duration on the intensity of electrochemical grinding]. Aktual'nye problemy v mashinostroenii = Actual Problems in Machine Building, 2019, vol. 6, no. 1–4, pp. 48–52.
Funding
This work was financially supported within the framework of the NSTU Research and Development Thematic Plan (project No. TP-PTM-1_20 project).
Acknowledgements
The studies were performed at the Collective use center “Structure, mechanical and physical properties of materials” NSTU for help in conducting joint research work.
Borisov M.A., Lobanov D.V., Yanyushkin A.S., Skeeba V.Yu. Investigation of the Process of Automatic Control of Current Polarity Reversal in the Conditions of Hybrid Technology of Electrochemical Processing of Corrosion-Resistant Steels. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2020, vol. 22, no. 1, pp. 6–15. DOI: 10.17212/1994-6309- 2020-22.1-6-15. (In Russian).