Introduction. The development of modern engineering necessitates the creation of materials with a combination of properties such as strength, corrosion resistance, heat conductivity, heat resistance, wear resistance, etc. In the manufacture of new types of products with a complex profile, bimetallic materials are widely used. For processing such products, it is advisable to use electrophysical processing methods, one of which is the technology of copy-piercing electrical discharge machining (EDM). Currently, the EDM method is one of the most common methods for processing modern materials. The paper is devoted to improving the efficiency of the EDM of bimetallic materials such as steel-copper. Subjects of research are: unevenness of the material removal of the treated surface, the roughness parameter during the EDM of a steel-copper type bimetallic material under various modes of electric discharge machining. The aim of the work is to increase the efficiency and accuracy of the EDM process of complex-profile bimetallic products electrode tool (ET) with various physical and mechanical properties. Methods. Experimental studies were carried out according to the classical experiment. For the experiments, a copy-piercing electrical discharge EDM machine Smart CNC was used. As a bimetallic processed product, a steel substrate with a deposited coating was used. The base material is steel 09G2S, the surfacing material is M1 copper. As electrode electrodes used: steel 20; duralumin grade D16; copper M2. Results and Discussion. A theoretical model is developed that allows one to calculate the amount of removal of the bimetallic material for steel-copper removal depending on the regimes of EDM and material ET. The convergence of the theoretical model with the results of experimental studies is 15%. An experimental study was made of the wear of ET during the EDM of a bimetallic steel-copper material depending on the modes of EDM and the material of the ET. It is established that during EDM of copper ET in the med and max modes, the wear of ET is minimal and amounts to 0.03 - 0.05 mm, respectively. The roughness parameters are calculated and the treated surface of the bimetallic steel-copper EDM bimetallic material is analyzed at different modes of processing ET with various electrophysical properties.
1. Zhivushkin A.A., Kozlova E.A., Chubukov I.A., Marova A.Yu. Osobennosti primeneniya kompozitsionnogo materiala "alyuminii – nitrid bora" v aviatsionnykh dvigatelyakh [Features of application of aluminium – boron nitride composite material in aviation engines]. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta = Vestnik of Samara University: Aerospace and Mechanical Engineering, 2009, no. 3 (19), pp. 235–239.
2. Golovanenko S.A., Meandrov L.V. Proizvodstvo bimetallov [Bimetal production]. Moscow, Metallurgiya Publ., 1966. 132 p.
3. Matveev A.S., Matveev M.S. Osobennosti primeneniya konstruktsionnykh materialov pri izgotovlenii elektrodov vakuumnykh priborov [The structural materials features for manufacture vacuum equipment's electrodes]. Konstruktsii iz kompozitsionnykh materialov = Composite Materials Constructions, 2010, no. 2, pp. 28–31.
4. Gritsyuk V.G. Rezhimy i tekhnologiya obrabotki bimetallov s nalozheniem elektricheskogo polya. Diss. kand. tekhn. nauk [Modes and processing technology of bimetals with the application of an electric field. PhD eng. sci. diss.]. Voronezh, 2005. 201 p.
5. Neulybin S.D., Shitsyn Yu.D., Kuchev P.S., Gilev I.A. Plazmennaya naplavka medi na stal' na toke obratnoi polyarnosti [Plasma surfacing of copper on steel at opposite polarity current]. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk = Proceedings of the Samara Scientific Center of the Russian Academy of Sciences, 2014, vol. 16, no. 1–2, pp. 468–471.
6. Ablyaz T.R., Khanov A.M., Khurmatullin O.G. Sovremennye podkhody k tekhnologii elektroerozionnoi obrabotki materialov [Modern approaches to the technology of electric discharge machining of materials]. Perm', 2012. 112 p.
7. Pogonin A.A., Boiko A.F., Blinova T.A. Dispersnyi analiz produktov elektroerozionnoi pretsizionnoi obrabotki [The disperse analysis of products of electroerosive precision processing]. Tekhnologiya Mashinostroeniya = Engineering Technology, 2010, no. 6, pp. 26–28.
8. Slyusarev M.V. Issledovanie parametrov kachestva bimetallicheskikh listov [The study of the quality parameters of bimetallic sheets]. Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 9, Issledovaniya molodykh uchenykh = Science Journal of Volgograd State University. Young Scientists’ Research, 2007, no. 6, pp. 176–182.
9. Lee H.T., Tai T.Y. Relationship between EDM parameters and surface crack formation. Journal of Materials Processing Technology, 2003, vol. 142, iss. 3, pp. 676–683. DOI: 10.1016/S0924-0136(03)00688-5.
10. Das S., Klotz M., Klocke F. EDM simulation: finite element-based calculation of deformation, microstructure and residual stresses. Journal of Materials Processing Technology, 2003, vol. 142, iss. 2, pp. 434–451. DOI: 10.1016/S0924-0136(03)00624-1.
11. Zhurin A.V. Metody rascheta tekhnologicheskikh parametrov i elektrodov-instrumentov pri elektroerozionnoi obrabotke. Diss. kand. tekhn. nauk [Methods for calculating process parameters and tool electrodes in EDM. PhD eng. sci. diss.]. Tula, 2005. 132 p.
12. Tang J., Yang X. A thermo-hydraulic modeling for the formation process of the discharge crater in EDM. Procedia CIRP, 2016, vol. 42, pp. 685–690. DOI: 10.1016/j.procir.2016.02.302.
13. Tsai H.C., Yan B.H., Huang F.Y. EDM performance of Cr/Cu-based composite electrodes. International Journal of Machine Tools and Manufacture, 2003, vol. 43, iss. 3, pp. 245–252. DOI: 10.1016/S0890-6955(02)00238-9.
14. Hayakawa S., Sasaki Y., Itoigawa F., Nakamura T. Relationship between occurrence of material removal and bubble expansion in electrical discharge machining. Procedia CIRP, 2013, vol. 6, pp. 174–179. DOI: 10.1016/j.procir.2013.03.095.
15. Shlykov E.S., Sirotenko L.D. Osobennosti obrabotki bimetallicheskikh materialov elektrodami s raznymi fiziko-mekhanicheskimi svoistvami [Special aspects of bimetal processing with electrode with physical and mechanical properties]. Zhurnal magistrov = Masters Journal, 2016, no. 1, pp. 199–203.
16. Ploshkin V.V. Strukturnye i fazovye prevrashcheniya v poverkhnostnykh sloyakh stalei pri elektroerozionnoi obrabotke. Diss. kand. tekhn.nauk [Structural and phase transformations in the surface layers of steels during electrical discharge machining. PhD eng. sci. diss.]. Moscow, 2006. 281 p.
17. Tao J., Ni J., Shih A.J. Modeling of the anode crater formation in electrical discharge machining. Journal of Manufacturing Science and Engineering, 2012, vol. 134 (1), p. 011002. DOI: 10.1115/1.4005303.
18. Dey S., Roy D.C. Experimental study using different tools/electrodes E.G. copper, graphite on M.R.R of E.D.M process and selecting the best one for maximum M.R.R in optimum condition. International Journal of Modern Engineering Research, 2013, vol. 3, iss. 3, pp. 1263–1267.
19. Weingärtner E., Kuster F., Wegener K. Modeling and simulation of electrical discharge machining. Procedia CIRP, 2012, vol. 2, pp. 74–78. DOI: 10.1016/j.procir.2012.05.043.
20. Janmanee P., Muttamara A. Performance of difference electrode materials in electrical discharge machining of tungsten carbide. Energy Research Journal, 2010, vol. 1, iss. 2, pр. 87–90. DOI: 10.3844/erjsp.2010.87.90.
21. Abbas N.M., Solomon D.G., Bahari Md. F. A review on current research trends in electrical discharge machining (EDM). International Journal of Machine Tools & Manufacture, 2007, vol. 47, pp. 1214–1228. DOI: 10.1016/j.ijmachtools.2006.08.026.
22. Yeo S.H., Kurnia W., Tan P.C. Electro-thermal modelling of anode and cathode in micro-EDM. Journal of Physics D: Applied Physics, 2007, vol. 40 (8), pp. 2513–2521. DOI: 10.1088/0022-3727/40/8/015.
This work was supported by a grant from the President of the Russian Federation for state support of young Russian doctors of science No. МК-2072.2019.8
Shlykov E.S., Ablyaz T.R. Complex Analysis of the Process of Electrical Discharge Machining of Bimetallic Steel-Copper Material. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2020, vol. 22, no. 1, pp. 16– 26. DOI: 10.17212/1994-6309-2020-22.1-16-26. (In Russian).