Введение. Морфологические изменения свободной поверхности материалов в процессе нагружения интересны с фундаментальной и практической точки зрения. В первом случае благодаря деформационному рельефу ученые судят о процессах, протекающих внутри материала, идентифицируют механизмы деформации, анализируют изменение напряженно-деформированного состояния и т.д. Во втором случае деформационный рельеф представляет собой нежелательное явление, так как он ухудшает сопротивление усталости, адгезию, приводит к растрескиванию и снижает другие физико-механические свойства деталей машин. Кроме того, на основе деформационного рельефа пытаются оценивать остаточный ресурс работы деталей машин. Сегодня промышленность использует материалы в различном структурном состоянии. Микроструктура металла (наличие или отсутствие зерен и границ зерен, размер зерна, текстура, кристаллографическая ориентация и т.д.) оказывает существенное влияние на характер протекания пластической деформации и морфологию деформированной поверхности. Цель работы: изучить влияние структуры материала на эволюцию морфологии поверхности в процессе деформации. В работе исследованы никелевые образца в монокристаллическом, поликристаллическом и ультрамелкозернистом состояниях. Методами исследования являются механические испытания на сжатие, конфокальная лазерная сканирующая микроскопия. Количественная оценка проводилась с использованием стандартизированных трехмерных параметров шероховатости. Результаты и обсуждение. В работе показано, влияние внутренней структуры материала на эволюцию морфологии деформационной поверхности. Изменения в деформационном рельефе обсуждены с точки зрения преобладающих деформационных механизмов для каждого структурного состояния материала. Показано, что с использованием трехмерных параметров шероховатости можно оценить наличие потенциальных концентраторов напряжений на поверхности. Было определено, что наличие глубоких острых впадин наиболее присуще материалу в поликристаллическом состоянии. Результаты работы могут быть полезны для аргументированного выбора микроструктуры материала при изготовлении деталей машин и для математического моделирования поведения металлов под нагрузкой.
1. The effect of grain size on the localization of plastic deformation in shear bands / H.S. Ho, M. Risbet, X. Feaugasb, G. Moulin // Scripta Materialia. – 2011. – Vol. 65, iss. 11. – P. 998–1001. – DOI: 10.1016/j.scriptamat.2011.09.001.
2. Grain-scale micromechanics of polycrystal surfaces during plastic straining / D. Raabe, M. Sachtleber, H. Weiland, G. Scheele // Acta Materialia. – 2003. – Vol. 51. – P. 1539–1560. – DOI: 10.1016/S1359-6454(02)00557-8.
3. Extrusions and intrusions in fatigued metals. Pt. 2. AFM and EBSD study of the early growth of extrusions and intrusions in 316L steel fatigued at room temperature / J. Man, P. Klapetek, O. Man, A. Weidner, K. Obrtl?´k, J. Pola´k // Philosophical Magazine. – 2009. – Vol. 89, iss. 16. – P. 1337–1372. – DOI: 10.1080/14786430902917624.
4. AFM and SEM-FEG study on fundamental mechanisms leading to fatigue crack initiation / J. Man, M. Valtr, M. Petrenec, J. Dluhoš, I. Kube?na, K. Obrtlík, J. Polák // International Journal of Fatigue. – 2015. – Vol. 76. – P. 11–18. – DOI: 10.1016/j.ijfatigue.2014.09.019.
5. Meng B., Fu M.W. Size effect on deformation behavior and ductile fracture in microforming of pure copper sheets considering free surface roughening // Materials and Design. – 2015. – Vol. 83. – P. 400–412. – DOI: 10.1016/j.matdes.2015.06.067.
6. Sangid M.D., Maier H.J., Sehitoglu H. A physically based fatigue model for prediction of crack initiation from persistent slip bands in polycrystals // Acta Materialia. – 2011. – Vol. 59, iss. 1. – P. 328–341. – DOI: 10.1016/j.actamat.2010.09.036.
7 Atypical “boomerang” slip traces in [001] niobium single crystals deformed at room temperature / D.S.H. Charrier, J. Bonneville, C. Coupeau, Y. Nahas // Scripta Materialia. – 2012. – Vol. 66, iss. 7. – P. 475–478. – DOI: 10.1016/j.scriptamat.2011.12.019.
8. A comparison of collective dislocation motion from single slip quantitative topographic analysis during in-situ AFM room temperature tensile tests on Cu and Feα crystals / C. Kahloun, G. Monnet, S. Queyreau, L.T. Le, P. Franciosi // International Journal of Plasticity. – 2016. – Vol. 84. – P. 277–298. – DOI: 10.1016/j.ijplas.2016.06.002.
9. Topological analysis of {110} slip in an alpha-iron crystal from in situ atomic force microscopy / C. Kahloun, L.T. Le, G. Monnet, M.-H. Chavanne, E. Ait, P. Franciosi // Acta Materialia. – 2013. – Vol. 61, iss. 17. – P. 6459–6465. – DOI: 10.1016/j.actamat.2013.07.023.
10. Kramer D.E., Savage M.F., Levine L.E. AFM observations of slip band development in Al single crystals // Acta Materialia. – 2005. – Vol. 53, iss. 17. – P. 4655–4664. – DOI: 10.1016/j.actamat.2005.06.019.
11. The Evolution of slip morphology and fatigue crack initiation in surface grains of Ni200 / K.S. Chan, J.W. Tian, B. Yang, P.K. Liaw // Metallurgical and Materials Transactions A. – 2009. – Vol. 40, iss. 11. – P. 2545–2556. – DOI: 10.1007/s11661-009-9980-4.
12. The fundamental relationships between grain orientation, deformation-induced surface roughness and strain localization in an aluminum alloy / M.R. Stoudt, L.E. Levine, A.Creuzigera, J.B. Hubbard // Materials Science and Engineering: A. – 2011. – Vol. 530, iss. 1. – P. 107–116. – DOI: 10.1016/j.msea.2011.09.050.
13. Investigating the relationship between grain orientation and surface height changes in nickel polycrystals under tensile plastic deformation / K. Balusu, R. Kelton, E.I. Meletis, H. Huang // Mechanics of Materials. – 2019. – Vol. 134. – P. 165–175. – DOI: 10.1016/j.mechmat.2019.04.011.
14. Microstructure and mechanical properties of Cu and Cu-Zn alloys produced by equal channel angular pressing / Z.J. Zhang, Q.Q. Duan, X.H. An, S.D. Wu, G. Yang, Z.F. Zhang // Materials Science and Engineering: A. – 2011. – Vol. 528. – P. 4259–4267. – DOI: 10.1016/j.msea.2010.12.080.
15. Effects of dislocation slip mode on high-cycle fatigue behaviors of ultrafine-grained Cu-Zn alloy processed by equal-channel angular pressing / Z.J. Zhang, X.H. An, P. Zhang, M.X. Yang, G. Yang, S.D. Wu, Z.F. Zhang // Scripta Materialia. – 2013. – Vol. 68. – P. 389–392. – DOI: 10.1016/j.scriptamat.2012.10.036.
16. Mousavi S.E., Meratian M., Rezaeian A. Investigation of mechanical properties and fracture surfaces of dual-phase 60–40 brass alloy processed by warm equal-channel angular pressing // Journal of Materials Science. – 2017. – Vol. 52. – P. 8041–8051. – DOI: 10.1007/s10853-017-1006-9.
17. Characteristic features of physical and mechanical properties of ultrafine-grained Al–Mg alloy 1560 / V.A. Krasnoveikin, A. Kozulin, V.A. Skripnyak, E.N. Moskvichev, D.V. Lychagin // Inorganic Materials: Applied Research. – 2018. – Vol. 9, iss. 9. – P. 389–392. – DOI: 10.1134/S2075113318020168.
18. Sliding wear behavior of submicrocrystalline pure iron produced by high-pressure torsion straining / H. Kato, Y. Todaka, M. Umemoto, M. Haga, E. Sentoku // Wear. – 2015. – Vol. 336–337. – P. 58–68. – DOI: 10.1016/j.wear.2015.04.014.
19. Wear resistance and electroconductivity in copper processed by severe plastic deformation / A.P. Zhilyaev, I. Shakhova, A. Belyakov, R. Kaibyshev, T.G. Langdon // Wear. – 2013. – Vol. 305. – P. 89–99. – DOI: 10.1016/j.wear.2013.06.001.
20. ГОСТ Р ИСО 25178-2–2014. Геометрические характеристики изделий (GPS). Структура поверхности. Ареал. Ч. 2. Термины, определения и параметры структуры поверхности. – М.: Стандартинформ, 2015. – 47 с.
21. Lychagin D.V., Alfyorova E.A. Slip as the basic mechanism for formation of deformation relief structural elements // Physics of the Solid State. – 2017. – Vol. 59, iss. 7. – P. 1433–1439. – DOI: 10.1134/S1063783417070137.
22. Micromechanical model of deformation-induced surface roughening in polycrystalline materials / V.A. Romanova, R. Balokhonov, A. Panin, M.S. Kazachenok, V.S. Shakhijanov // Physical Mesomechanics. – 2017. – Vol. 13, iss. 3. – P. 324–333. – DOI: 10.1134/S1029959917030080.
23. Alfyorova E.A., Lychagin D.V. Self-organization of plastic deformation and deformation relief in FCC single crystals // Mechanics of Materials. – 2018. – Vol. 117. – P. 202–213. – DOI: 10.1016/j.mechmat.2017.11.011.
24. Deformation behaviour of ultra-fine-grained copper / R.Z. Valiev, E.V. Kozlov, Yu.F. Ivanov, J. Lian, A.A. Nazarov, B. Baudelet // Acta Metallurgica et Materialia. – 1994. – Vol. 42. – P. 2467–2475. – DOI: 10.1016/0956-7151(94)90326-3.
25. Flow processes at low temperatures in ultrafine-grained aluminum / N.Q. Chinh, P. Szommera, T. Csanádia, T.G. Langdon // Materials Science and Engineering: A. – 2006. – Vol. 434, iss. 1–2. – P. 326–334. – DOI: 10.1016/j.msea.2006.07.014.
26. Experimental evidence for grain-boundary sliding in ultrafine-grained aluminum processed by severe plastic deformation / N.Q. Chinh, P. Szommera, Z. Horita, T.G. Langdon // Advanced Materials. – 2006. – Vol. 18, iss. 1. – P. 34–39. – DOI: 10.1002/adma.200501232.
27. Tensile deformation of an ultrafine-grained aluminium alloy: micro shear banding and grain boundary sliding / I. Sabirov, Y. Estrin, M.R. Barnett, I. Timokhina, P.D. Hodgson // Acta Materialia. – 2008. – Vol. 56. – P. 2223–2230. – DOI: 10.1016/j.actamat.2008.01.020.
Финансирование
Результаты получены при финансовой поддержке Программы фундаментальных исследований государственных академий на 2013–2020 годы (проект № III.23.2.4). Работа выполнена при поддержке Томского политехнического университета в рамках Программы повышения конкурентоспособности Томского политехнического университета.
Благодарности
Авторы благодарят проф. д.ф.-м.н. Д.В. Лычагина за образцы монокристаллов.
Алфёрова Е.А., Филиппов А.В. Влияние структуры материала на морфологию деформированной поверхности // Обработка металлов (технология, оборудование, инструменты). – 2020. –Т. 22, № 1. – С. 90–101. – DOI: 10.17212/1994-6309-2020- 22.1-90-101.
Alfyorova E.A., Filippov A.V. Influence of the Material Structure on the Deformed Surface Morphology. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2020, vol. 22, no. 1, pp. 90–101. DOI: 10.17212/1994- 6309-2020-22.1-90-101. (In Russian).