Obrabotka metallov

OBRABOTKA METALLOV

METAL WORKING AND MATERIAL SCIENCE
Print ISSN: 1994-6309    Online ISSN: 2541-819X
English | Русский

Recent issue
Vol. 27, No 2 April - June 2025

The Effect of Ultrasonic Impact-Friction Treatment on a Surface Roughness of 09Mn2Si Structural Steel

Vol. 22, No 2 April - June 2020
Authors:

Lezhnin Nikita,
Makarov Aleksey,
Luchko Sergey,
Loginov Boris,
Loginov Artem
DOI: http://dx.doi.org/10.17212/1994-6309-2020-22.2-16-29
Abstract

Introduction. Ultrasonic impact-frictional treatment (UIFT) is a new method of surface strain hardening that improves the properties and refines the microstructure of the surface layer of metallic material. Unlike traditional ultrasonic impact treatment (UIT), the UIFT applies impacts with ultrasonic frequency at an acute angle α to the metal surface in order to activate the shear deformation mode. Oxygen-free atmosphere of argon enhances friction and prevents embrittlement of the diffusion-active deformed layer. A decrease of the angle α during the UIFT leads to a shift of the metal displaced by the tool towards the impact. Therefore, the tool position, oscillating with an ultrasonic frequency, with respect to the tool trajectory may have a profound effect on the surface microrelief. Objective is studying the influence of the impact direction on the roughness and hardening degree of the 09Mn2Si structural steel surface regarding the tool cross-feed during UIFT at an angle α = 50º in the argon medium. Research Methods are following: microhardness measurements, atomic force microscopy (AFM), optical profilometry, optical microscopy and scanning electron microscopy with EBSD analysis. Results and discussion. After grinding, the steel surface microhardness is 200 HV0.1 and the arithmetic mean deviation of the surface profile is Ra= 0.6 μm. UIT at an angle α = 90º in an industrial oil medium results in the surface hardening up to 260 HV0.1, while the Ra parameter increases to 1.6 μm. UIFT with the impact vertical deviation towards the specimen cross-feed (forehand) provides a relatively uniform microrelief with Ra= 0.4 μm and the deformed layer microhardness of up to 500 HV0.1. The tool deviation in the contrary direction towards the specimen cross-feed (backhand) increases the surface hardening degree (620 HV0.1), but leads to the formation of an advanced microrelief consisting of shifted metal displaced by the tool, as well as to the Ra parameter increase up to 3.5 μm. At the same time, the submicrorelief roughness remains approximately at the same level (Ra= 0.03–0.04 μm) for all three hardening treatment methods. Thus, the angle and impact direction during ultrasonic hardening treatment are important technological parameters that allow long-range controlling of the surface microrelief with the UIFT applied as a finishing hardening treatment. UIFT is an effective method of surface hardening, intended to form a surface even with a lower roughness of the microprofile compared to that of a traditional grease-applied UIT.


Keywords: surface strain hardening, ultrasonic impact treatment, surface roughness, structural steel

References

1. Tkadletz M., Schalk N., Daniel R., Keckes J., Czettl C., Mitterer C. Advanced characterization methods for wear resistant hard coatings: a review on recent progress. Surface & Coating Technology, 2016, vol. 285, pp. 31–46. DOI: 10.1016/j.surfcoat.2015.11.016.



2. Khomyakov M.N., Pinaev P.A., Statsenko P.A., Miroshnichenko I.B., Grachev G.N. Poluchenie uprochnyayushchikh pokrytii iz amorfiziruemykh splavov FE-CR-SI-B-C lazerno-plazmennymi metodami [Formation of hardening coatings based on Fe-Cr-Si-B-C alloys with high glass-forming ability by laser-plasma methods]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2018, vol. 20, no. 4, pp. 21–34. DOI: 10.17212/1994-6309-2018-20.4-21-34. (In Russian).



3. Fenili C.P., Souza F.S. de, Marin G., Probst S.M.H., Binder C., Klein A.N. Corrosion resistance of low-carbon steel modified by plasma nitriding and diamond-like carbon. Diamond and Related Materials, 2017, vol. 80, pp. 153–161. DOI: 10.1016/j.diamond.2017.11.001.



4. Skorynina P.A., Makarov A.V., Men’shakov A.I., Osintseva A.L. Vliyanie nizkotemperaturnoi tsementatsii v plazme elektronnogo puchka na uprochnenie i sherokhovatost' poverkhnosti metastabil'noi austenitnoi stali [Effect of low-temperature carburization in electron beam plasma on the hardening and surface roughness of the metastable austenitic steel]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2019, vol. 21, no. 2, pp. 97–109. DOI: 10.17212/1994-6309-2019-21.2-97-109. (In Russian).



5. Blumenstein V., Kukareko V. Strukturnye prevrashcheniya v poverkhnostnom sloe pri obrabotke mul'tiradiusnym deformiruyushchim instrumentom [Structural transformations in the surface layer during multiradius deforming tool processing]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2018, vol. 20, no. 2, pp. 75–86. DOI: 10.17212/1994-6309-2018-20.2-75-86. (In Russian).



6. Kikuchi S., Nakamura Y., Nambu K., Ando M. Effect of shot peening using ultra-fine particles on fatigue properties of 5056 aluminum alloy under rotating bending. Materials Science and Engineering: A, 2016, vol. 652, pp. 279–286. DOI: 10.1016/j.msea.2015.11.076.



7. Chen M., Jiang C., Xu Z., Zhan K., Ji V. Experimental study on macro- and microstress state, microstructural evolution of austenitic and ferritic steel processed by shot peening. Surface & Coatings Technology, 2019, vol. 359, pp. 511–519. DOI: 10.1016/j.surfcoat.2018.12.097.



8. Lu K., Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Materials Science and Engineering: A, 2004, vol. 375–377, pp. 38–45. DOI: 10.1016/j.msea.2003.10.261.



9. Yang X., Pan H., Zhang J., Gao H., Shu B., Gong Y., Zhu X. Progress in mechanical properties of gradient structured metallic materials induced by surface mechanical attrition treatment. Materials Transactions, 2019, vol. 60, iss. 8, pp. 1543–1552. DOI: 10.2320/matertrans.MF201911.



10. Zhang Q., Hu Z., Su W., Zhou H., Liu C., Yang Y., Qi X. Microstructure and surface properties of 17-4PH stainless steel by ultrasonic surface rolling technology. Surface & Coatings Technology, 2017, vol. 321, pp. 64–73. DOI: 10.1016/j.surfcoat.2017.04.052.



11. Yang X., Wang X., Ling X., Wang D. Enhanced mechanical behaviors of gradient nano-grained austenite stainless steel by means of ultrasonic impact treatment. Results in Physics, 2017, vol. 7, pp. 1412–1421. DOI: 10.1016/j.rinp.2017.04.002.



12. Panin A.V., Kazachenok M.S., Kozelskaya A.I., Balokhonov R.R., Romanova V.A., Perevalova O.B., Pochivalov Yu.I. The effect of ultrasonic impact treatment on the deformation behavior of commercially pure titanium under uniaxial tension. Materials & Design, 2017, vol. 117, iss. 5, pp. 371–381. DOI: 10.1016/j.matdes.2017.01.006.



13. Makarov A.V., Malygina I.Yu., Burov S.V., Savraj R.A. Sposob ultrazvukovoi uprochniauchei obrabotki detalei [Method of ultrasonic simple processing of details]. Patent RF, no. 2643289, 2018.



14. Makarov A.V., Savrai R.A., Malygina I.Yu., Volkova E.G., Burov S.V. Nanostructuring and surface hardening of structural steels by ultrasonic impact-frictional treatment. AIP Conference Proceedings, 2018, vol. 2053, iss. 1, pp. 020006-1–020006-5. DOI: 10.1063/1.5084352.



15. Lezhnin N.V., Makarov A.V., Luchko S.N. The effect of ultrasonic impact-frictional treatment on the surface roughness and hardening of 09Mn2Si constructional steel. Letters on Materials, 2019, vol. 9, iss. 3, pp. 310–315. DOI: 10.22226/2410-3535-2019-3-310-315.



16. Li L., Kim M., Lee S., Bae M., Lee D. Influence of multiple ultrasonic impact treatments on surface roughness and wear performance of SUS301 steel. Surface & Coatings Technology, 2016, vol. 307, pp. 517–524. DOI: 10.1016/j.surfcoat.2016.09.023.



17. Chamgordani S.A., Miresmaeili R., Aliofkhazraei M. Improvement in tribological behavior of commercial pure titanium (CP-Ti) by surface mechanical attrition treatment (SMAT). Tribology International, 2018, vol. 119, pp. 744–752. DOI: 10.1016/j.triboint.2017.11.044.



18. Mordyuk B.N., Prokopenko G.I., Vasylyev M.A., Iefimov M.O. Effect of structure evolution induced by ultrasonic peening on the corrosion behavior of AISI-321 stainless steel. Material Science and Engineering: A, 2007, vol. 458, pp. 253–261. DOI: 10.1016/j.msea.2006.12.049.



19. Liu Y., Wang D., Deng C., Xia L., Huo L., Wang L., Gong B. Influence of re-ultrasonic impact treatment on fatigue behaviors of S690QL welded joints. International Journal of Fatigue, 2014, vol. 66, pp. 155–160. DOI: 10.1016/j.ijfatigue.2014.03.024.



20. Zhoua J., Retrainta D., Suna Z., Kanouté P. Comparative study of the effects of surface mechanical attrition treatment and conventional shot peening on low cycle fatigue of a 316L stainless steel. Surface & Coatings Technology, 2018, vol. 349, pp. 556–566. DOI: 10.1016/j.surfcoat.2018.06.041.



21. Kovalevskaya Zh.G., Uvarkin P.V., Tolmachev A.I. Some features of the formation of the surface microrelief of steel under ultrasonic finishing treatment. Russian Journal of Nondestructive Testing, 2012, vol. 48, iss. 3, pp. 153–158. DOI: 10.1134/S1061830912030047.



22. Li L., Kim M., Lee S., Kim T., Lee J., Lee D. A two-step periodic micro-nano patterning process via ultrasonic impact treatment on a rough SUS301 stainless steel surface. Surface & Coatings Technology, 2017, vol. 330, pp. 204–210. DOI: 10.1016/j.surfcoat.2017.10.004.



23. Alekhin V.P., Alekhin O.V. Nanotekhnologiya poverkhnostnoi uprochnyayushchei i finishnoi obrabotki detalei iz konstruktsionnykh i instrumental'nykh stalei [Nanotechnology of surface hardening and finishing processing of parts from structural and tool steels]. Mashinostroenie i inzhenernoe obrazovanie = Mechanical engineering and engineering education, 2007, no. 4 (13), pp. 2–13.



24. Panin A.V., Kazachenok M.S., Kozelskaya A.I., Hairullin R.R., Sinyakova E.A. Mechanisms of surface roughening of commercial purity titanium during ultrasonic impact treatment. Materials Science and Engineering: A, 2015, vol. 647, pp. 43–50. DOI: 10.1016/j.msea.2015.08.086.



25. Loginov B.A., Loginov P.B., Loginov V.B., Loginov A.B. Zondovaya mikroskopiya: primeneniya i rekomendatsii po razrabotke [Probe microscopy: applications and development recommendations]. Nanoindustriya = Nanoindustry, 2019, vol. 12, no. 6 (92), pp. 352–364.



26. Makarov A.V., Korshunov L.G. Metallophysical foundations of nanostructuring frictional treatment of steels. The Physics of Metals and Metallography, 2019, vol. 120, iss. 3, pp. 303–311. DOI: 10.1134/S0031918X18120128.



27. Peters J.O., Boyce B.L., Chen X., McNaney J.M., Hutchinson J.W., Ritchie R.O. On the application of the Kitagawa–Takahashi diagram to foreign-object damage and high-cycle fatigue. Engineering Fracture Mechanics, 2002, vol. 69, pp. 1425–1446. DOI: 10.1016/S0013-7944(01)00152-7.



28. Mordyuk B.N., Prokopenko G.I. Ultrasonic impact peening for the surface properties’ management. Journal of Sound and Vibration, 2007, vol. 308, pp. 855–866. DOI: 10.1016/j.jsv.2007.03.054.



29. Arifvianto B., Mahardika M. Effects of surface mechanical attrition treatment (SMAT) on a rough surface of AISI 316L stainless steel. Applied Surface Science, 2012, vol. 258, pp. 4538–4543. DOI: 10.1016/j.apsusc.2012.01.021.

Acknowledgements. Funding

The research was carried out within the state assignment of Ministry of Education and Science of the Russian Federation on themes No. АААА-А18-118020190116-6, supported by RFBR (project No. 18-38-00868).

For citation:

Lezhnin N.V., Makarov A.V., Luchko S.N., Loginov B.A., Loginov A.B. The effect of ultrasonic impact-friction treatment on a surface roughness of 09Mn2Si structural steel. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2020, vol. 22, no. 2, pp. 16–29. DOI: 10.17212/1994-6309-2020-22.2-16-29. (In Russian).

Views: 2040