Introduction. Current trends in the development of composite materials based on aluminum alloys discretely hardened by SiC are aimed at structural applications, including at high temperatures. The manufacture of parts using metal forming processes allows to minimize the finishing of workpieces, in which there is a rapid wear of the cutting tool. However, it is necessary to increase the ductility of aluminium matrix composite materials by preliminary deformation-heat treatment. After such treatment, under certain thermomechanical conditions, the composites may exhibit signs of superplasticity. It is also important to be able to predict how external influences (high temperature and pressure) will affect the deformation behavior of composites during operation. Therefore, an integral part of the assessment of the deformation properties of composite materials intended for continuous service is creep testing. At the same time, a joint review of the results of uniaxial tensile tests under creep and superplasticity conditions broadens the picture of the deformation behavior of composite materials in a wide range of temperature-velocity effects. Objective: to conduct a comparative analysis of the results of published studies on the deformation behavior of aluminium matrix composite materials discretely reinforced with silicon carbide during the manifestation of superplasticity and under conditions of high temperature creep. The paper presents the results of published studies of composite materials with matrices based on the following grades of aluminum alloys: Al2009, Al2014, Al2024, Al2124, Al6013, Al6061, Al6063, Al6090, Al8009, Al8090, IN9021. The deformation of aluminium matrix composite materials in the state of superplasticity and under conditions of high temperature creep is considered. Results and discussion. A literature review shows that superplastic deformation mainly manifests itself at strain rates of more than 10–2 s–1. Moreover, the maximum elongation reaches the limits of 200 to 450%. The highest elongation of 685% is obtained at a rate of 5 • 10-4 s-1 for Al2024 / 10SiCp material. In a number of works, it is found that in order to achieve superplastic deformation, the process temperature should be equal to or slightly higher than the temperature of partial melting of the matrix at the grain boundaries of the matrix and the boundaries of the matrix with reinforcing particles. Composite materials with matrices based on the following alloying systems are best studied: Al-Mg-Cu (Al2124), Al-Mg-Si (Al6061), Al-Fe-V-Si (Al8009). Among the factors that most significantly affect the deformation behavior of aluminium matrix composites during creep, it can be noted: the technology of primary production of a composite material, preliminary deformation-heat treatment, the chemical composition of the matrix alloy, and the type and size of the hardening phase. Studies are noted to study the effect of temperature fluctuations on deformation behavior during operation under unsteady creep conditions with a change in pressure. The data collected show that, under certain thermal cycling conditions and low applied pressures, composite materials tend to have high degrees of deformation, which can be promising for developing manufacturing techniques for workpieces and products.
1. Kablov E.N., Shchetanov B.V., Grashchenkov D.V., Shavnev A.A., Nyafkin A.N. Metallomatrichnye kompozitsionnye materialy na osnove Al-SiC [Metallic composite materials on the base of Al?SiC]. Aviatsionnye materialy i tekhnologii = Aviation Materials and Technologies, 2012, no. S, pp. 373–380.
2. Berezovskii V.V., Shavnev A.A., Lomov S.B., Kurganova Yu.A. Poluchenie i analiz struktury dispersnouprochnennykh kompozitsionnykh materialov sistemy Al-SiC s razlichnym soderzhaniem armiruyushchei fazy [Receiving and the analysis of structure of the disperse strengthened composite materials of Al-SiC system with the different maintenance of the reinforcing phase]. Aviatsionnye materialy i tekhnologii = Aviation Materials and Technologies, 2014, no. S6, pp. 17–23. DOI: 10.18577/2071-9140-2014-0-s6-17-23.
3. Shavnev A.A., Berezovskii V.V., Kurganova Yu.A. Osobennosti primeneniya konstruktsionnogo metallicheskogo kompozitsionnogo materiala na osnove alyuminievogo splava, armirovannogo chastitsami SiC. Ch. 1 (obzor) [Specificity of metal matrix composites based on aluminum alloy reinforced by SiC particles application. Pt. 1 (review)]. Novosti materialovedeniya. Nauka i tekhnika = Material Science and Technology News, 2015, no. 3 (15), pp. 3–10.
4. Shavnev A.A., Berezovskii V.V., Kurganova Yu.A. Osobennosti primeneniya konstruktsionnogo metallicheskogo kompozitsionnogo materiala na osnove alyuminievogo splava, armirovannogo chastitsami SiC. Ch. 1 (obzor) [Specificity of metal matrix composites based on aluminum alloy reinforced by SiC particles application. Pt. 2 (review)]. Novosti materialovedeniya. Nauka i tekhnika = Material Science and Technology News, 2015, no. 3 (15), pp. 11–17.
5. Pugacheva N.B., Michurov N.S., Bykova T.M. The structure and properties of the 30al-70sic metal matrix composite material. Diagnostics, Resource and Mechanics of Materials and Structures, 2015, iss. 6, pp. 6–18. DOI: 10.17804/2410-9908.2015.6.006-018. (In Russian).
6. Grishina O.I., Shavnev A.A., Serpova V.M. Osobennosti vliyaniya strukturnykh parametrov na mekhanicheskie kharakteristiki metallicheskogo kompozitsionnogo materiala na osnove alyuminievykh splavov, uprochnennykh chastitsami karbida kremniya (obzor) [Features of influence of structural parameters on mechanical properties of metallic composite material based on particle-reinforced aluminum alloys by silicon carbide]. Aviatsionnye materialy i tekhnologii = Aviation Materials and Technologies, 2014, no. S6, pp. 24–27. DOI: 10.18577/2071-9140-2014-0-s6-24-27.
7. Stoyakina E.A., Kurbatkina E.I., Simonov V.N., Kosolapov D.V., Gololobov A.V. Mekhanicheskie svoistva alyumomatrichnykh kompozitsionnykh materialov, uprochnennykh chastitsami SiC, v zavisimosti ot matrichnogo splava (obzor) [Mechanical properties of aluminum-matrix composite materials reinforced with SiC particles, depending on the matrix alloy (review)]. Trudy VIAM = Proceedings of VIAM, 2018, no. 2 (62), pp. 62–73. DOI: 10.18577/2307-6046-2018-0-2-8-8.
8. Miracle D.B. Metal matrix composites – From science to technological significance. Composites Science and Technology, 2005, vol. 65, iss. 15–16, pp. 2526–2540. DOI: 10.1016/j.compscitech.2005.05.027.
9. Kainer K.U. Basics of metal matrix composites. 2006. DOI: 10.1002/3527608117.ch1.
10. Pugacheva N.B., Michurov N.S., Senaeva E.I., Bykova T.M. Structure and thermophysical properties of aluminum-matrix composites. The Physics of Metals and Metallography, 2016, vol. 117, no. 11, pp. 1188–1195. DOI: 10.1134/S0031918X16110119.
11. Kurbatkina E.I., Shavnev A.A., Kosolapov D.V., Gololobov A.V. Osobennosti termicheskoi obrabotki kompozitsionnykh materialov s alyuminievoi matritsei (obzor) [Features of heat treatment of composite materials with aluminum matrix (review)]. Trudy VIAM = Proceedings of VIAM, 2017, no. 11 (59), pp. 82–97. DOI: 10.18577/2307-6046-2017-0-11-9-9.
12. Pugacheva N.B., Malygina I.Yu., Michurov N.S., Senaeva E.I., Antenorova N.P. Effect of heat treatment on the structure and phase composition of aluminum matrix composites containing silicon carbide. Diagnostics, Resource and Mechanics of Materials and Structures, 2017, iss. 6, pp. 28–36. DOI: 10.17804/2410-9908.2017.6.028-036. (In Russian).
13. Vani V.V., Chak S.K. The effect of process parameters in Aluminum Metal Matrix Composites with Powder Metallurgy. Manufacturing Review, 2018, vol. 5, no. 7. DOI: 10.1051/mfreview/2018001.
14. Konovalov A.V., Smirnov S.V. Sovremennoe sostoianie i napravleniia issledovanii metallomatrichnykh kompozitov sistemy Al/SiC (Obzor) [Modern state and direction of researches of Al/SiC metal matrix composites (Review)]. Konstruktsii iz kompozitsionnykh materialov = Composite materials constructions, 2015, no. 1 (137), pp. 30–35.
15. Smirnov A.S., Belozerov G.A., Konovalov A.V., Shveikin V.P., Muizemnek O.Yu. Rheological behavior and the formation of the microstructure of a composite based on an Al-Zn-Mg-Cu alloy with a 10% SiC content. AIP Conference Proceedings, 2016, vol. 1785, iss. 1, p. 040068. DOI: 10.1063/1.4967125.
16. Vichuzhanin D.I., Smirnov S.V., Nesterenko A.V., Igumnov A.S. Diagramma predel'noi plastichnosti metallomatrichnogo kompozita V95/SiC s soderzhaniem chastits SiC 10 ob.% pri okolosolidusnoi temperature [A fracture locus for a 10 volume-percent B95/SiC metal matrix composite at the near-solidus temperature]. Pis'ma o materialakh = Letters on Materials, 2018, vol. 8, iss. 1, pp. 88–93. DOI: 10.22226/2410-3535-2018-1-88-93.
17. Smirnov S.V., Vichuzhanin D.I., Nesterenko A.V., Pugacheva N.B., Konovalov A.V. A fracture locus for a 50 volume-percent Al/SiC metal matrix composite at high temperature. International Journal of Material Forming, 2017, vol. 10, iss. 5, pp. 831–843. DOI: 10.1007/s12289-016-1323-6.
18. Xiong Z., Geng L., Yao C.K. Investigation of high-temperature deformation behavior of a SiC whisker reinforced 6061 aluminium composite. Composites Science and Technology, 1990, vol. 39, iss. 2, pp. 117–125. DOI: 10.1016/0266-3538(90)90050-F.
19. Razaghian A., Yu D., Chandra T. Fracture behaviour of a SiC-particle-reinforced aluminium alloy at high temperature. Composites Science and Technology, 1998, vol. 58, iss. 2, pp. 293–298. DOI: 10.1016/S0266-3538(97)00130-9.
20. Bozic D., Vilotijevic M., Rajkovic V., Gnjidic Z. Mechanical and fracture behaviour of a SiC-particle-reinforced aluminum alloy at high temperature. Materials Science Forum, 2005, vol. 494, pp. 487–492. DOI: 10.4028/www.scientific.net/MSF.494.487.
21. Xu W., Jin X., Xiong W., Zeng X., Shan D. Study on hot deformation behavior and workability of squeeze-cast 20 vol%SiCw/6061Al composites using processing map. Materials Characterization, 2018, vol. 135, pp. 154–166. DOI: 10.1016/j.matchar.2017.11.026.
22. Nieh T.G., Lesuer D.R., Syn C.K. Tensile and fatigue properties of a 25 vol% SiC particulate reinforced 6090 Al composite at 300 °C. Scripta Metallurgica et Materialia, 1995, vol. 32, iss. 5, pp. 707–712. DOI: 10.1016/0956-716X(95)91590-L.
23. Nieh T.G., Xia K., Langdon T.G. Mechanical properties of discontinuous SiC reinforced aluminum composites at elevated temperatures. Journal of Engineering Materials and Technology, 1988, vol. 110, iss. 2, pp. 77–82.
24. Chawla N., Habel U., Shen Y.-L., Andres C., Jones J.W., Allison J.E. The effect of matrix microstructure on the tensile and fatigue behavior of SiC particle-reinforced 2080 Al matrix composites. Metallurgical and Materials Transactions A, 2000, vol. 31, iss. 2, pp. 531–540. DOI: 10.1007/s11661-000-0288-7.
25. Kurbatkina E.I., Kosolapov D.V., Gololobov A.V., Shavnev A.A. Issledovanie struktury i svoistv metallicheskogo kompozitsionnogo materiala sistemy Al–Zn–Mg–Cu/SiC [Study on the structure and properties of Al–Zn–Mg–Cu/SiC composite]. Tsvetnye Metally, 2019, no. 1, pp. 40–45. DOI: 10.17580/tsm.2019.01.06.
26. Kaibychev R., Kazyhanov V., Bampton C.C. Superplastic deformation of the 2009-15% SiCw composite. Key Engineering Materials, 1997, vol. 127, iss. 131, pp. 953–960. DOI: 10.4028/www.scientific.net/KEM.127–131.953.
27. Mishra R.S., Mukherjee A.K., Echer C., Bampton C.C., Bieler T.R. Influence of temperature on segregation in 2009 Al-SiCw composite and its implication on high strain rate superplasticity. Scripta Materialia, 1996, vol. 35, iss. 2, pp. 247–252. DOI: 10.1016/1359-6462(96)00118-2.
28. Han B.Q., Chan K.C. High-strain-rate superplasticity of an AL2009-SICw composite. Journal of Materials Science Letters, 1997, vol. 16, iss. 10, pp. 827–829. DOI: 10.1023/A:1018586610298.
29. Chan K.C., Tong G.Q. Deformation and cavitation behavior of a high-strain-rate superplastic Al2009/20SiCW composite. Materials Letters, 2000, vol. 44, iss. 1, pp. 39–44. DOI: 10.1016/S0167-577X(99)00294-3.
30. Wu M.Y., Sherby O.D. Superplasticity in a silicon carbide whisker reinforced aluminum alloy. Scripta Metallurgica, 1984, vol. 18, iss. 8, pp. 773–776. DOI: 10.1016/0036-9748(84)90392-2.
31. Kim H.Y., Hong S.H. High temperature deformation behavior of 20 vol-percent SiCw 2024Al metal matrix composite. Scripta Metallurgica et Materialia, 1994, vol. 30, iss. 3, pp. 297–302. DOI: 10.1016/0956-716X(94)90378-6.
32. González-Doncel G., Sherby O.D. Tensile ductility and fracture of superplastic Aluminum-SiC composites under thermal cycling conditions. Metallurgical and Materials Transactions A, 1996, vol. 27, iss. 9, pp. 2837–2842.
33. Wei Z., Zhang B., Wang Y. Microstructure and superplasticity in a stir – cast SiCp/2024 aluminium composite. Scripta Metallurgica et Materiala, 1994, vol. 30, iss. 11, pp. 1367–1372. DOI: 10.1016/0956-716X(94)90229-1.
34. Bin Z.L., Jintao H., Yanwen W. Plastic working and superplasticity in aluminium-matrix composites reinforced with SiC particulates. Journal of Materials Processing Technology, 1998, vol. 84, iss. 1–3, pp. 271–273. DOI: 10.1016/S0924-0136(98)00233-7.
35. Xiao B., Ma Z., Bi J. Investigation on superplasticity in SiCp/2024 cold rolling sheet after heat treatment. Journal of Materials Science and Technology, 2003, vol. 19, iss. 4, pp. 382–384
36. Nieh T.G., Henshall C.A., Wadsworth J. Superplasticity at high strain rates in a SiC whisker reinforced Al alloy. Scripta Metallurgica, 1984, vol. 18, iss. 12, pp. 1405–1408. DOI: 10.1016/0036-9748(84)90374-0.
37. Kim W.-J., Yeon J.H., Shin D.H., Hong S.H. Deformation behavior of powder-metallurgy processed high-strain-rate superplastic 20%SiCp/2124 Al composite in a wide range of temperature. Materials Science and Engineering: A, 1999, vol. 269, iss. 1–2, pp. 142–151. DOI: 10.1016/S0921-5093(99)00157-4.
38. Kim W.-J., Sherby O.D. Particle weakening in superplastic SiC/2124 Al composites at high temperature. Acta Materialia, 2000, vol. 48, iss. 8, pp. 1763–1774. DOI: 10.1016/S1359-6454(00)00006-9.
39. Zahid G.H., Todd R.I., Prangnell P.B. Deformation and microstructural development in a 2124Al/SiCpMMC during high strain rate superplasticity. Materials Science Forum, 1999, vol. 304–306, pp. 233–240. DOI: 10.4028/www.scientific.net/MSF.304-306.233.
40. Tong G.Q., Chan K.C. Deformation behavior of a PM Al6013/15SiCP composite sheet at elevated temperature. Materials Letters, 1999, vol. 38, iss. 5, pp. 326–330. DOI: 10.1016/S0167-577X(98)00183-9.
41. Ceschini L., Morri A., Orazi L. High strain rate superplasticity in aluminium matrix composites. Proceedings of the Institution of Mechanical Engineers. Pt. L: Journal of Materials: Design and Applications, 2002, vol. 216, iss. 1, pp. 43–48. DOI: 10.1177/146442070221600106.
42. Xiaoxu H., Qing L., Yao C.K., Mei Y. Superplasticity in a SiCw-6061Al composite. Journal of Materials Science Letters, 1991, vol. 10, iss. 16, pp. 964–966. DOI: 10.1007/BF00722147.
43. Chan K.C., Tong G.Q. The cavitation behavior of a high-strain-rate superplastic Al6061/20SiCw composite under uniaxial and equibiaxial tension. Scripta Materialia, 1998, vol. 38, iss. 11, pp. 1705–1710. DOI: 10.1016/S1359-6462(98)00103-1.
44. Chan K.C., Tong G.Q. Strain rate sensitivity of a high-strain-rate superplastic Al6061/20SiCW composite under uniaxial and equibiaxial tension. Materials Letters, 2001, vol. 51, iss. 5, pp. 389–395. DOI: 10.1016/S0167-577X(01)00326-3.
45. Li X.J., Tan M.J. A study of the strength of P/M 6061Al and composites during high strain rate superplastic deformation. Journal of Materials Science, 2003, vol. 38, iss. 11, pp. 2505–2510. DOI: 10.1023/A:1023973622567.
46. Kim W.J., Lee Y.S., Moon S.J., Hong S.H. High strain rate superplasticity in powder metallurgy aluminium alloy 6061 + 20 vol.-%SiCp composite with relatively large particle size. Materials Science and Technology, 2000, vol. 16, iss. 6, pp. 675–680. DOI: 10.1179/026708300101508261.
47. Kim W.J., Hong S.H., Jeong H.G., Min S.H. High-strain-rate superplastic flow in 6061 Al composite enhanced by liquid phase. Journal of Materials Research, 2002, vol. 17, iss. 1, pp. 65–74. DOI: 10.1557/JMR.2002.0012.
48. Nieh T.G., Imai T., Wadsworth J., Kojima S. High strain rate superplasticity of a powder metallurgy SiC particulate reinforced 6061 Al composite (6061/SiC/17.5p). Scripta Metallurgica et Materialia, 1994, vol. 31, iss. 12, pp. 1685–1690. DOI: 10.1016/0956-716X(94)90464-2.
49. Vijayananth S., Jayaseelan V., Daniel S.A.A., Kumar N.M. High temperature superplasticity and its deformation mechanism of AA6063/SiCp. Case Studies in Thermal Engineering, 2019, vol. 14, p. 100479. DOI: 10.1016/j.csite.2019.100479.
50. Grishaber R.B., Mishra R.S., Mukherjee A.K. Effect of testing environment on intergranular microsuperplasticity in an aluminum MMC. Materials Science and Engineering: A, 1996, vol. 220, iss. 1–2, pp. 78–84. DOI: 10.1016/S0921-5093(96)10462-7.
51. Chan K.C., Han B.Q. High-strain-rate superplasticity of particulate reinforced aluminium matrix composites. International Journal of Mechanical Sciences, 1998, vol. 40, iss. 2–3, pp. 305–311. DOI: 10.1016/S0020-7403(97)00056-8.
52. Higashi K., Nieh T.G., Wadsworth J. Effect of temperature on the mechanical properties of mechanically-alloyed materials at high strain rates. Acta Metallurgica et Materialia, 1995, vol. 43, iss. 9, pp. 3275–3282. DOI: 10.1016/0956-7151(95)00047-Y.
53. Tong G.Q., Chan K.C. High-strain-rate superplasticity of an Al–4.4Cu–1.5Mg/21SiCW composite sheet. Materials Science and Engineering: A, 2000, vol. 286, iss. 2, pp. 218–224. DOI: 10.1016/S0921-5093(00)00811-X.
54. Mabuchi M., Higashi K. On accommodation helper mechanism for superplasticity in metal matrix composites. Acta Materialia, 1999, vol. 47, iss. 6, pp. 1915–1922. DOI: 10.1016/S1359-6454(99)00045-2.
55. McLean M. Creep deformation of metal-matrix composites. Composites Science and Technology, 1985, vol. 23, iss. 1, pp. 37–52. DOI: 10.1016/0266-3538(85)90010-7.
56. Pickens J.R., Langan T.J., England R.O., Liebson M. A study of the hot-working behavior of SiC−Al alloy composites and their matrix alloys by hot torsion testing. Metallurgical and Materials Transactions A, 1987, vol. 18, iss. 2, pp. 303–312. DOI: 10.1007/BF02825711.
57. Razaghian A., Yu D., Chandra T. Fracture behaviour of a SiC-particle-reinforced aluminium alloy at high temperature. Composites Science and Technology, 1998, vol. 58, iss. 2, pp. 293–298. DOI: 10.1016/S0266-3538(97)00130-9.
58. Azpen Q.M., Baharudin B.T.H.T., Shamsuddin S., Mustapha F. Reinforcement and hot workability of aluminium alloy 7075 particulate composites: a review. Journal of Engineering Science and Technology, 2018, vol. 13, iss. 4, pp. 1034–1057.
59. Pal S., Ray K.K., Mitra R. Room temperature mechanical properties and tensile creep behavior of powder metallurgy processed and hot rolled Al and Al–SiCp composites. Materials Science and Engineering A, 2010, vol. 527, iss. 26, pp. 6831–6837. DOI: 10.1016/j.msea.2010.07.075.
60. Bhattacharyya J.J., Mitra R. Effect of hot rolling temperature and thermal cycling on creep and damage behavior of powder metallurgy processed Al-SiC particulate composite. Materials Science and Engineering A, 2012, vol. 557, pp. 92–105. DOI: 10.1016/j.msea.2012.06.073.
61. Pandey A.B., Mishra R.S., Mahajan Y.R. Steady state creep behaviour of silicon carbide particulate reinforced aluminium composites. Acta Metallurgica et Materialia, 1992, vol. 40, iss. 8, pp. 2045–2052. DOI: 10.1016/0956-7151(92)90190-P.
62. Tjong S.C., Ma Z.Y. High-temperature creep behaviour of powder-metallurgy aluminium composites reinforced with SiC particles of various sizes. Composites Science and Technology, 1999, vol. 59, iss. 7, pp. 1117–1125. DOI: 10.1016/S0266-3538(98)00151-1.
63. Pandey A.B., Mishra R.S., Mahajan Y.R. Creep fracture in Al-SiC metal-matrix composites. Journal of Materials Science, 1993, vol. 28, iss. 11, pp. 2943–2949. DOI: 10.1007/BF00354697.
64. Cadek J., Oikawa H., Sustek V., Pahutova M. High temperature creep behaviour of silicon carbide particulate reinforced aluminium. High Temperature Materials and Processes, 1994, vol. 13, iss. 4, pp. 327–338. DOI: 10.1515/HTMP.1994.13.4.327.
65. Pandey A.B., Mishra R.S., Mahajan Y.R. Effect of a solid solution on the steady-state creep behavior of an aluminum matrix composite. Metallurgical and Materials Transactions A, 1996, vol. 27A, pp. 305–16. DOI: 10.1007/BF02648408.
66. Deshmukh S.P., Mishra R.S., Kendig K.L. Creep behavior of extruded Al–6Mg–1Sc–1Zr–10 vol.% SiCp composite. Materials Science and Engineering: A, 2005, vol. 410–411, pp. 53–57. DOI: 10.1016/j.msea.2005.08.096.
67. Lin Z., Mohamed F.A. Creep and microstructure in powder metallurgy 15 vol.% SiCp–2009 Al composite. Journal of Materials Science, 2012, vol. 47, iss. 6, pp. 2975–2984. DOI: 10.1007/s10853-011-6131-2.
68. Biner S.B. Creep Deformation Behavior of SiC Particulate Reinforced Aluminum Composite. 22nd Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: A: Ceramic Engineering and Science Proceedings, 1988, vol. 19, ch. 53. DOI: 10.1002/9780470294482.ch53.
69. Spigarelli S., Cabibbo M., Evangelista E., Langdon T.G. Creep properties of an Al-2024 composite reinforced with SiC particulates. Materials Science and Engineering: A, 2002, vol. 328, iss. 1–2, pp. 39–47. DOI: 10.1016/S0921-5093(01)01698-7.
70. Gonzalez-Doncel G., Sherby O.D. High temperature creep behavior of metal matrix aluminum–SiC composites. Acta Metallurgica et Materialia, 1993, vol. 41, iss. 10, pp. 2797–2805. DOI: 10.1016/0956-7151(93)90094-9.
71. Lin Z., Li Y., Mohamed F.A. Creep and substructure in 5 vol.% SiC-2124 Al composite. Materials Science and Engineering A, 2002, vol. 332, iss. 1–2, pp. 330–342. DOI: 10.1016/S0921-5093(01)01760-9.
72. Li Y., Mohamed F.A. An investigation of creep behavior in an SiC–2124 Al composite. Acta Materialia, 1997, vol. 45, iss. 11, pp. 4775–4785. DOI: 10.1016/S1359-6454(97)00130-4.
73. Ryu H., Chung K., Cha S., Hong S. Analysis of creep behavior of SiC/Al metal matrix composites based on a generalized shear-lag model. Journal of Materials Research, 2004, vol. 19, iss.12, pp. 3633–3640. DOI: 10.1557/JMR.2004.0472.
74. Cadek J., Pahutová M., Šustek V. Creep behaviour of a 2124 Al alloy reinforced by 20 vol.% silicon carbide particulates. Materials Science and Engineering: A, 1998, vol. 246, iss. 1–2, pp. 252–264. DOI: 10.1016/S0921-5093(97)00694-1.
75. Ma Z.Y., Tjong S.C. The high-temperature creep behaviour of 2124 aluminium alloys with and without particulate and SiC-whisker reinforcement. Composites Science and Technology, 1999, vol. 59, iss. 5, pp. 737–747. DOI: 10.1016/S0266-3538(98)00113-4.
76. Nardone V.C., Strife J.R. Analysis of the creep behavior of silicon carbide whisker reinforced 2124 Al(T4). Metallurgical Transactions A, 1987, vol. 18, iss. 1, pp. 109–114. DOI: 10.1007/BF02646227.
77. Krajewski P.E., Allison J.E., Jones J.W. The effect of SiC particle reinforcement on the creep behavior of 2080 aluminum. Metallurgical and Materials Transactions A, 1997, vol. 28, iss. 3, pp. 611–620. DOI: 10.1007/s11661-997-0046-1.
78. Zong B.Y., Derby B. Creep behaviour of a SiC particulate reinforced Al-2618 metal matrix composite. Acta Materialia, 1997, vol. 45, iss. 1, pp. 41–49. DOI: 10.1016/S1359-6454(96)00171-1.
79. Wakashima K., Moriyama T., Mori T. Steady-state creep of a particulate SiC/6061 Al composite. Acta Materialia, 2000, vol. 48, iss. 4, pp. 891–901. DOI: 10.1016/S1359-6454(99)00386-9.
80. Fernández R., González-Doncel G. Threshold stress and load partitioning during creep of metal matrix composites. Acta Materialia, 2008, vol. 56, iss. 11, pp. 2549–2562. DOI: 10.1016/j.actamat.2008.01.037.
81. Nieh T.G. Creep rupture of a silicon carbide reinforced aluminum composite. Metallurgical Transactions A, 1984, vol. 15, iss. 1, pp. 139–146. DOI: 10.1007/BF02644396.
82. Daehn G.S., González-Doncel G. Deformation of whisker-reinforced metal-matrix composites under changing temperature conditions. Metallurgical Transactions A, 1989, vol. 20, iss. 11, pp. 2355–2368. DOI: 10.1007/BF02666670.
83. Park K.T., Lavernia E.J., Mohamed F.A. High temperature creep of silicon carbide particulate reinforced aluminum. Acta Metallurgica et Materialia, 1990, vol. 38, iss. 11, pp. 2149–2159. DOI: 10.1016/0956-7151(90)90082-R.
84. Park K.T., Mohamed F.A. Creep strengthening in a discontinuous SiC-Al composite. Metallurgical and Materials Transactions A, 1995, vol. 26, pp. 3119–3129. DOI: 10.1007/BF02669441.
85. Fernández R., González-Doncel G. Influence of processing route and reinforcement content on the creep fracture parameters of aluminium alloy metal matrix composites. Journal of Alloys and Compounds, 2009, vol. 478, iss. 1–2, pp. 133–138. DOI: 10.1016/j.jallcom.2008.11.062.
86. Khalifa T.A., Mahmoud T.S. Elevated temperature mechanical properties of Al alloy AA6063/SiCp MMCs. Proceedings of the World Congress on Engineering 2009, London, U.K., 1–3 July 2009, vol. 2, pp. 1557–1562. ISBN: 978-988-18210-1-0.
87. Li Y., Langdon T.G. A comparison of the creep properties of an Al-6092 composite and the unreinforced matrix alloy. Metallurgical and Materials Transactions A, 1998, vol. 29, iss. 10, pp. 2523–2531. DOI: 10.1007/s11661-998-0224-9.
88. Zhu S.J., Peng L.M., Ma Z.Y., Bi J., Wang F.G., Wang Z.G. High temperature creep behavior of SiC whisker-reinforced AlFeVSi composite. Materials Science and Engineering: A, 1996, vol. 215, iss. 1–2, pp. 120–124. DOI: 10.1016/0921-5093(96)80015-3.
89. Cadek J., Kucharová K., Zhu S.J. High temperature creep behaviour of an Al-8.5Fe-1.3V-1.7Si alloy reinforced with silicon carbide particulates. Materials Science and Engineering: A, 2000, vol. 283, iss. 1–2, pp. 172–180. DOI: 10.1016/S0921-5093(00)00706-1.
90. Cadek J., Kucharová K., Zhu S.J. Transition from athermal to thermally activated detachment of dislocations from small incoherent particles in creep of an Al–8.5Fe–1.3V–1.7Si alloy reinforced with silicon carbide particulates. Materials Science and Engineering: A, 2001, vol. 297, iss. 1–2, pp. 176–184. DOI: 10.1016/S0921-5093(00)01258-2.
91. Cadek J., Kucharová K., Zhu S.J. Creep behaviour of an Al–8.5Fe–1.3V–1.7Si–15SiCp composite at temperatures ranging from 873 to 948 K. Materials Science and Engineering: A, 2002, vol. 328, iss. 1–2, pp. 283–290. DOI: 10.1016/S0921-5093(01)01705-1.
92. Ma Z.Y., Tjong S.C. High-temperature creep behaviour of SiC particulate reinforced Al–Fe–V–si alloy composite. Materials Science and Engineering: A, 2000, vol. 278, iss. 1–2, pp. 5–15. DOI: 10.1016/S0921-5093(99)00613-9.
93. Liao J., Tan M.J., Sridhar I. Creep behavior of spray-deposited AlLi/SiCp composite. Materials Science and Engineering: A, 2010, vol. 527, iss. 18–19, pp. 4906–4913. DOI: 10.1016/j.msea.2010.04.040.
94. Fernández R., González-Doncel G. Load partitioning during creep of powder metallurgy metal matrix composites and Shear-Lag model predictions. Materials Science and Engineering A, 2009, vol. 500, iss. 1–2, pp. 109–113. DOI: 10.1016/j.msea.2008.09.041.
95. Chumakov E.V. Analiz protsessa deformatsionnogo uprochneniya na neustanovivsheisya stadii polzuchesti [Analyzing the process of strain hardening at the transient creep stage]. Nauchno-tekhnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta = St. Petersburg Polytechnic University Journal of Engineering Science and Technology, 2014, no. 3 (202), pp. 154–160.
96. Yakovlev S.S., Larin S.N., Leonova E.V. Teoreticheskie osnovy izotermicheskogo deformirovaniya anizotropnykh vysokoprochnykh materialov v rezhime kratkovremennoi polzuchesti [The oretical bases isothermal deformation anisotropic high footage in short-term creep]. Izvestiya Tul'skogo gosudarstvennogo universiteta = Izvestiya Tula State University, 2014, no. 1, pp. 110–122.
97. Smirnov S.V., Kryuchkov D.I., Nesterenko A.V., Berezin I.M., Vichuzhanin D.I. Eksperimental'noe issledovanie kratkovremennoi neustanovivsheisya polzuchesti alyumomatrichnogo kompozita v usloviyakh odnoosnogo szhatiya [Experimental study of short-term transient creep of the Al/SiC metal-matrix composite under uniaxial compression]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mekhanika = PNRPU Mechanics Bulletin, 2018, no. 4, pp. 98–105. DOI: 10.15593/perm.mech/2018.4.09.
98. Li Y., Langdon T.G. A unified interpretation of threshold stresses in the creep and high strain rate superplasticity of metal matrix composites. Acta Materialia, 1999, vol. 47, iss. 12, pp. 3395–3403. DOI: 10.1016/S1359-6454(99)00219-0.
This work was carried out as part of the fundamental scientific research program of the State Academies of Sciences for 2013-2020 on the theme No. 0391-2019-0005 Development of scientific bases of designing of optimum production engineering plastic forming of metal materials with the secured level of a continuity and physicomechanical properties"
Kryuchkov D.I., Nesterenko A.V. A review of experimental studies of creep behavior and superplasticity in a discontinuous SiC aluminum-matrix composites. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2020, vol. 22, no. 1, pp. 130–157. DOI: 10.17212/1994-6309-2020-22.2-130-157. (In Russian).