ОБРАБОТКА МЕТАЛЛОВ

ТЕХНОЛОГИЯ • ОБОРУДОВАНИЕ • ИНСТРУМЕНТЫ
Print ISSN: 1994-6309    Online ISSN: 2541-819X
English | Русский

Последний выпуск
Том 22, № 3 Июль - Сентябрь 2020

Механические и трибологические свойства металлической стенки, выращенной электродуговым способом в среде защитных газов

Том 22, № 3 Июль - Сентябрь 2020
Авторы:

Кузнецов Максим Александрович,
Данилов Владимир Иванович,
Крампит Максим Андреевич,
Чинахов Дмитрий Анатольевич,
Слободян Михаил Степанович
DOI: http://dx.doi.org/10.17212/1994-6309-2020-22.3-18-32
Аннотация

Введение. В настоящее время одним из наиболее перспективных направлений реализации технологических процессов производства металлических изделий сложной конфигурации является аддитивное производство. В его основе лежит послойная наплавка металла в соответствии с трехмерной моделью, созданной посредством компьютерного проектирования. В качестве исходного материала используют металлические порошки или проволоку различных составов. Источником тепла служат электронный пучок, лазерный луч или электрическая дуга. Несмотря на существующее достаточно большое количество технологий выращивания металлических изделий сложной формы некоторые из них имеют очень высокую стоимость оборудования и соответственно высокую себестоимость. Поэтому разработка технологии и оборудования электродугового послойного выращивания металлических изделий является сложной актуальной задачей. Цель работы: исследование механических и трибологических свойств металлических изделий, выращенных электродуговым способом в среде защитных газов из углеродистой стали по разработанной технологии. В работе исследованы металлические вертикальные стенки, выращенные электродуговым послойным способом в среде защитных газов. Методами исследования являются механические испытания предела прочности, предела текучести и относительного удлинения выращенных образцов, а также трибологические свойства (площадь поверхности износа, коэффициент трения и амплитуда вибрационных ускорений). Результаты и обсуждение. Выявлено, что образцы, выращенные с использованием технологии аддитивного производства на основе электродуговой наплавки плавящимся электродом в среде активных газов, имеют механические свойства, соизмеримые с литым металлом. Установлено, что произошло уменьшение погонной энергии при выращивании металлической стенки по разработанной технологии за счет предварительного подогрева электродной проволоки до 400…600 °С путем установки дополнительного токоподвода, расположенного на расстоянии 250…400 мм от торца проволоки для пропускания подогревающего тока. В результате повысились трибологические свойства выращенных образцов и их износ стал более равномерным.


Ключевые слова: электродуговое аддитивное производство, предел прочности, относительное удлинение, предел текучести, трибологические свойства

Список литературы

1. ГОСТ Р 57558–2017. Аддитивные технологические процессы. Базовые принципы. Ч. 1. Термины и определения. – М.: Стандартинформ, 2017. – 12 с.



2. Fabrication of metal and alloy components by additive manufacturing: examples of 3D materials science / L.E. Murr, E. Martinez, K.N. Amato, S.M. Gaytan, J. Hernandez, D.A. Ramirez, P.W. Shindo, F. Medina, R.B. Wicker // Journal of Materials Research and Technology. – 2012. – Vol. 1 (28). – P. 42–54. – DOI: 10.1016/S2238-7854(12)70009-1.



3. Metal fabrication by additive manufacturing using laser and electron beam melting technologies / L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F. Medina, R.B. Wicker // Journal of Materials Science and Technology. – 2012. – Vol. 28, iss. 1. – P. 1–14. – DOI: 10.1016/S1005-0302(12)60016-4.



4. Laser additive manufacturing of metallic components: materials, processes and mechanisms / D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe // International Materials Reviews. – 2012. – Vol. 57, iss. 3. – P. 133–164. – DOI: 10.1179/1743280411Y.0000000014.



5. Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs / S.L. Sing, J. An, W.Y. Yeong, F.E. Wiria // Journal of Orthopaedic Research. – 2016. – Vol. 34, iss. 3. – P. 369–385. – DOI: 10.1002/jor.23075.



6. Körner C. Additive manufacturing of metallic components by selective electron beam melting – a review // International Materials Reviews. – 2016. – Vol. 61, iss. 5. – P. 361–377. – DOI: 10.1080/09506608.2016.1176289.



7. Additive manufacturing of metals / D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann // Acta Materialia. – 2016. – Vol. 117. – P. 371–392. – DOI: 10.1016/j.actamat.2016.07.019.



8. A review of powdered additive manufacturing techniques for Ti-6Al-4V biomedical applications / W.S.W. Harun, N.S. Manam, M.S.I.N. Kamariah, S. Sharif, A.H. Zulkifly, I. Ahmad, H. Miura // Powder Technology. – 2018. – Vol. 331. – P. 74–97. – DOI: 10.1016/j.powtec.2018.03.010.



9. Chen S., Tong Y., Liaw P.K. Additive manufacturing of high-entropy alloys: a review // Entropy. – 2018. – Vol. 20, iss. 12. – P. 937. – DOI: 10.3390/e20120937.



10. Ahmed N. Direct metal fabrication in rapid prototyping: a review // Journal of Manufacturing Processes. – 2019. – Vol. 42. – P. 167–191. – DOI: 10.1016/j.jmapro.2019.05.001.



11. Frazier W.E. Metal additive manufacturing: a review // Journal of Materials Engineering and Performance. – 2014. – Vol. 23 (6). – P. 1917–1928. – DOI: 10.1007/s11665-014-0958-z.



12. The metallurgy and processing science of metal additive manufacturing / W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, S.S. Babu // International Materials Reviews. – 2016. – Vol. 61, iss. 5. – P. 315–360. – DOI: 10.1080/09506608.2015.1116649.



13. Murr L.E. A Metallographic review of 3D printing/additive manufacturing of metal and alloy products and components // Metallography, Microstructure, and Analysis. – 2018. – Vol. 7, iss. 2. – P. 103–132. – DOI: 10.1007/s13632-018-0433-6.



14. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: a critical review / Y. Kok, X.P. Tan, P. Wang, M.L.S. Nai, N.H. Loh, E. Liu, S.B. Tor // Materials and Design. – 2018. – Vol. 139. – P. 565–586. – DOI: 10.1016/j.matdes.2017.11.021.



15. Additive manufacturing of metallic components – Process, structure and properties / T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang // Progress in Materials Science. – 2018. – Vol. 92. – P. 112–224. – DOI: 10.1016/j.pmatsci.2017.10.001.



16. Metal additive manufacturing in the commercial aviation industry: a review / A. Gisario, M. Kazarian, F. Martina, M. Mehrpouya // Journal of Manufacturing Systems. – 2019. – Vol. 53. – P. 124–149. – DOI: 10.1016/j.jmsy.2019.08.005.



17. Progress in additive manufacturing on new materials: a review / N. Li, S. Huang, G. Zhang, R. Qin, W. Liu, H. Xiong, G. Shi, J. Blackburn // Journal of Materials Science and Technology. – 2019. – Vol. 35, iss. 2. – P. 242–269. – DOI: 10.1016/j.jmst.2018.09.002.



18. Wire-feed additive manufacturing of metal components: technologies, developments and future interests / D. Ding, X. Pan, D. Cuiuri, H. Li // International Journal of Advanced Manufacturing Technology. – 2015. – Vol. 81. – P. 465–481. – DOI: 10.1007/s00170-015-7077-3.



19. Oliveira J.P., Santos T.G., Miranda R.M. Revisiting fundamental welding concepts to improve additive manufacturing: from theory to practice // Progress in Materials Science. – 2020. – Vol. 107. – P. 100590. – DOI: 10.1016/j.pmatsci.2019.100590.



20. Wire + arc additive manufacturing / S.W. Williams, F. Martina, A.C. Addison, J. Ding, G. Pardal, P. Colegrove // Materials Science and Technology. – 2016. – Vol. 32, iss. 7. – P. 641–647. – DOI: 10.1179/1743284715Y.0000000073.



21. A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement / B. Wu, Z. Pan, D. Ding, D. Cuiuri, H. Li, J. Xu, J. Norrish // Journal of Manufacturing Processes. – 2018. – Vol. 35. – P. 127–139. – DOI: 10.1016/j.jmapro.2018.08.001.



22. Strategies and processes for high quality wire arc additive manufacturing / C.R. Cunningham, J.M. Flynn, A. Shokrani, V. Dhokia, S.T. Newman // Additive Manufacturing. – 2018. – Vol. 22. – P. 672–686. – DOI: 10.1016/j.addma.2018.06.020.



23. Deposition of Ti-6Al-4V using laser and wire. Part I: Microstructural properties of single beads / E. Brandl, V. Michailov, B. Viehweger, C. Leyens // Surface and Coatings Technology. – 2011. – Vol. 206. – P. 1120–1129. – DOI: 10.1016/j.surfcoat.2011.07.095.



24. Deposition of Ti-6Al-4V using laser and wire. Part II: Hardness and dimensions of single beads / E. Brandl, V. Michailov, B. Viehweger, C. Leyens // Surface and Coatings Technology. – 2011. – Vol. 206. – P. 1130–1141. – DOI: 10.1016/j.surfcoat.2011.07.094.



25. Mechanical properties of additive manufactured titanium (Ti-6Al-4V) blocks deposited by a solid-state laser and wire / E. Brandl, F. Palm, V. Michailov, B. Viehweger, C. Leyens // Materials and Design. – 2011. – Vol. 32. – P. 4665–4675. – DOI: 10.1016/j.matdes.2011.06.062.



26. Ding Y., Akbari M., Kovacevic R. Process planning for laser wire-feed metal additive manufacturing system // International Journal of Advanced Manufacturing Technology. – 2018. – Vol. 95, iss. 1–4. – P. 355–365. – DOI: 10.1007/s00170-017-1179-z.



27. Laser wire deposition of a large Ti-6Al-4V space component / N. Chekir, J.J. Sixsmith, R. Tollett, M. Brochu // Welding Journal. – 2019. – Vol. 28, iss. 6. – P. 172-s–180-s. – DOI: 10.29391/2019.98.014.



28. Melt pool size control through multiple closed-loop modalities in laser-wire directed energy deposition of Ti-6Al-4V / B.T. Gibson, Y.K. Bandari, B.S. Richardson, W.C. Henry, E.J. Vetland, T.W. Sundermann, L.J. Love // Additive Manufacturing. – 2020. – Vol. 32. – P. 100993. – DOI: 10.1016/j.addma.2019.100993.



29. Effect of heat input on phase content, crystalline lattice parameter, and residual strain in wire-feed electron beam additive manufactured 304 stainless steel / S. Tarasov, A. Filippov, N. Savchenko, S. Fortuna, V. Rubtsov, E. Kolubaev, S. Psakhie // The International Journal of Advanced Manufacturing Technology. – 2018. – Vol. 99, iss. 9–12. – P. 2353–2363. – DOI: 10.1007/s00170-018-2643-0.



30. Fuchs J., Schneider C., Enzinger N. Wire-based additive manufacturing using an electron beam as heat source // Welding in the World. – 2018. – Vol. 62, iss. 2. – P. 267–275. – DOI: 10.1007/s40194-017-0537-7.



31. Titanium alloy repair with wire-feed electron beam additive manufacturing technology / P. Wanjara, K. Watanabe, C. de Formanoir, Q. Yang, C. Bescond, S. Godet, M. Brochu, K. Nezaki, J. Gholipour, P. Patnaik // Advances in Materials Science and Engineering. – 2019. – Vol. 2019. – P. 3979471. – DOI: 10.1155/2019/3979471.



32. Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti-6Al-4V / F. Martina, J. Mehnen, S.W. Williams, P. Colegrove, F. Wang // Journal of Materials Processing Technology. – 2012. – Vol. 212. – P. 1377–1386. – DOI: 10.1016/j.jmatprotec.2012.02.002.



33. Fatigue crack propagation behaviour in wire + arc additive manufactured Ti-6Al-4V: Effects of microstructure and residual stress / J. Zhang, X. Wang, S. Paddea, X. Zhang // Materials and Design. – 2016. – Vol. 90. – P. 551–561. – DOI: 10.1016/j.matdes.2015.10.141.



34. Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment / J. Lin, Y. Lv, Y. Liu, Z. Sun, K. Wang, Z. Li, Y. Wu, B. Xu // Journal of the Mechanical Behavior of Biomedical Materials. – 2017. – Vol. 69. – P. 19–29. – DOI: 10.1016/j.jmbbm.2016.12.015.



35. Hönnige J.R., Colegrove P., Williams S. Improvement of microstructure and mechanical properties in wire + arc additively manufactured Ti-6Al-4V with machine hammer peening // Procedia Engineering. – 2017. – Vol. 216. – P. 8–17. – DOI: 10.1016/j.proeng.2018.02.083.



36. Enhanced strength and ductility in thin Ti-6Al-4V alloy components by alternating the thermal cycle strategy during plasma arc additive manufacturing / J. Lin, Y. Lv, D. Guo, X. Wu, Z. Li, C. Liu, B. Guo, G. Xu, B. Xu // Materials Science and Engineering A. – 2019. – Vol. 759. – P. 288–297. – DOI: 10.1016/j.msea.2019.05.025.



37. Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment / J. Lin, Y. Lv, Y. Liu, Z. Sun, K. Wang, Z. Li, Y. Wu, B. Xu // Journal of the mechanical behavior of biomedical materials. – 2017. – Vol. 69. – P. 19–29. – DOI: 10.1016/j.jmbbm.2016.12.015.



38. Ríos S., Colegrove P.A., Williams S.W. Metal transfer modes in plasma wire+arc additive manufacture // Journal of Materials Processing Technology. – 2019. – Vol. 264. – P. 45–54. – DOI: 10.1016/j.jmatprotec.2018.08.043.



39. Interrupted fatigue testing with periodic tomography to monitor porosity defects in wire + arc additive manufactured Ti-6Al-4V / R. Biswal, X. Zhang, M. Shamir, A.A. Mamun, M. Awd, F. Walther, A.K. Syed // Additive Manufacturing. – 2019. – Vol. 28. – P. 517–527. – DOI: 10.1016/j.addma.2019.04.026.



40. Interpass rolling of Ti-6Al-4V wire + arc additively manufactured features for microstructural refinement / A.R. McAndrew, M.A. Rosales, P.A. Colegrove, J.R. Hönnige, A. Ho, R. Fayolle, K. Eyitayo, I. Stan, P. Sukrongpang, A. Crochemore, Z. Pinter // Additive Manufacturing. – 2018. – Vol. 21. – P. 340–349. – DOI: 10.1016/j.addma.2018.03.006.



41. Residual stress of as-deposited and rolled wire + arc additive manufacturing Ti-6Al-4V components / F. Martina, M.J. Roy, B.A. Szost, S. Terzi, P.A. Colegrove, S.W. Williams, P.J. Withers, J. Meyer, M. Hofmann // Materials Science and Technology. – 2016. – Vol. 32, iss. 1. – P. 1439–1448. – DOI: 10.1080/02670836.2016.1142704.



42. The effectiveness of combining rolling deformation with wire–arc additive manufacture on β-grain refinement and texture modification in Ti-6Al-4V / J. Donoghue, A.A. Antonysamy, F. Martina, P.A. Colegrove, S.W. Williams, P.B. Prangnell // Materials Characterization. – 2016. – Vol. 114. – P. 103–114. – DOI: 10.1016/j.matchar.2016.02.001.



43. Mitigation of thermal distortion in wire arc additively manufactured Ti6Al4V part using active interpass cooling / B. Wu, Z. Pan, G. Chen, D. Ding, L. Yuan, D. Cuiuri, H. Li // Science and Technology of Welding and Joining. – 2019. – Vol. 24, iss. 5. – P. 484–494. – DOI: 10.1080/13621718.2019.1580439.



44. Hot-wire arc additive manufacturing Ti-6.5Al-2Zr-1Mo-1V titanium alloy: pore characterization, microstructural evolution, and mechanical properties / T. Lu, C. Liu, Z. Li, Q. Wu, J. Wang, T. Xu, J. Liu, H. Wang, S. Ma // Journal of Alloys and Compounds. – 2020. – Vol. 817. – P. 153334. – DOI: 10.1016/j.jallcom.2019.153334.



45. Elmer J.W., Gibbs G. The effect of atmosphere on the composition of wire arc additive manufactured metal components // Science and Technology of Welding and Joining. – 2019. – Vol. 24, iss. 5. – P. 367–374. – DOI: 10.1080/13621718.2019.1605473.



46. Evaluation of wire arc additive manufacturing for large-sized components in naval applications / A. Queguineur, G. Rückert, F. Cortial, J.Y. Hascoët // Welding in the World. – 2018. – Vol. 62, iss. 2. – P. 259–266. – DOI: 10.1007/s40194-017-0536-8.



47. Wire and arc additive manufacturing: a comparison between CMT and TopTIG processes applied to stainless steel / N. Rodriguez, L. Vázquez, I. Huarte, E. Arruti, I. Tabernero, P. Alvarez // Welding in the World. – 2018. – Vol. 62, iss. 5. – P. 1083–1096. – DOI: 10.1007/s40194-018-0606-6.



48. Bekker A.C.M., Verlinden J.C. Life cycle assessment of wire + arc additive manufacturing compared to green sand casting and CNC milling in stainless steel // Journal of Cleaner Production. – 2018. – Vol. 177. – P. 438–447. – DOI: 10.1016/j.jclepro.2017.12.148.



49. Hoefer K., Haelsig A., Mayr P. Arc-based additive manufacturing of steel components – comparison of wire- and powder-based variants // Welding in the World. – 2018. – Vol. 62, iss. 2. – P. 243–247. – DOI: 10.1007/s40194-017-0527-9.



50. Tandem metal inert gas process for high productivity wire arc additive manufacturing in stainless steel / F. Martina, J. Ding, S. Williams, A. Caballero, G. Pardal, L. Quintino // Additive Manufacturing. – 2019. – Vol. 25. – P. 545–550. – DOI: 10.1016/j.addma.2018.11.022.



51. Wire-arc additive manufacturing of a duplex stainless steel: thermal cycle analysis and microstructure characterization / V. A Hosseini,  M.Högström, K. Hurtig, M.A. Valiente Bermejo, L.-E. Stridh, L. Karlsson // Welding in the World. – 2019. – Vol. 63. – P. 975–987. – DOI: 10.1007/s40194-019-00735-y.



52. Heat-treatment effects on a bimetallic additively-manufactured structure (BAMS) of the low-carbon steel and austenitic-stainless steel / Md.R.U. Ahsan, A.N.M. Tanvir, G.-J. Seo, B. Bates, W. Hawkins, C. Lee, P.K. Liaw, M. Noakes, A. Nycz, D.B. Kim // Additive Manufacturing. – 2020. – Vol. 32. – P. 101036. – DOI: 10.1016/j.addma.2020.101036.



53. Experimental results for structural design of wire-and-arc additive manufactured stainless steel members / V. Laghi, M. Palermo, G. Gasparini, V.A. Girelli, T. Trombetti // Journal of Constructional Steel Research. – 2020. – P. 105858. – DOI: 10.1016/j.jcsr.2019.105858.



54. Wire-based additive manufacturing of stainless steel components / J.W. Elmer, J. Vaja, J.S. Carpenter, D.R. Coughlin, M.J. Dvornak, P. Hochanadel, P. Gurung, A. Johnson, G. Gibbs // Welding Journal. – 2020. – Vol. 99, iss. 1. – P. 8s–24s. – DOI: 10.29391/2020.99.002.



55. In-process control of distortion in wire and arc additive manufacturing based on a flexible multipoint support fixture / F. Li, S. Chen, J. Shi, Y. Zhao // Science and Technology of Welding and Joining. – 2019. – Vol. 24, iss. 1. – P. 36–42. – DOI: 10.1080/13621718.2018.1476083.



56. Effect of process parameters on the quality of aluminium alloy Al5Si deposits in wire and arc additive manufacturing using a cold metal transfer process / A.G. Ortega, L.C. Galvan, F. Deschaux-Beaume, B. Mezrag, S. Rouquette // Science and Technology of Welding and Joining. – 2018. – Vol. 23, iss. 4. – P. 316–332. – DOI: 10.1080/13621718.2017.1388995.



57. Optimisation of interpass temperature and heat input for wire and arc additive manufacturing 5A06 aluminium alloy / H. Geng, J. Li, J. Xiong, X. Lin // Science and Technology of Welding and Joining. – 2017. – Vol. 22, iss. 6. – P. 472–483. – DOI: 10.1080/13621718.2016.1259031.



58. Characterisation of 4043 aluminium alloy deposits obtained by wire and arc additive manufacturing using a cold metal transfer process / A.G. Ortega, L.C. Galvan, M. Salem, K. Moussaoui, S. Segonds, S. Rouquette, F. Deschaux-Beaume // Science and Technology of Welding and Joining. – 2019. – Vol. 24, iss. 6. – P. 538–547. – DOI: 10.1080/13621718.2018.1564986.



59. Effects of milling thickness on wire deposition accuracy of hybrid additive/subtractive manufacturing / S. Zhang, Y. Zhang, M. Gao, F. Wang, Q. Li, X. Zeng // Science and Technology of Welding and Joining. – 2019. – Vol. 24, iss. 5. – P. 375–381. – DOI: 10.1080/13621718.2019.1595925.



60. Micropore evolution in additively manufactured aluminum alloys under heat treatment and inter-layer rolling / J. Gu, S. Yang, M. Gao, J. Bai, Y. Zhai, J. Ding // Materials and Design. – 2020. – Vol. 186. – P. 108288. – DOI: 10.1016/j.matdes.2019.108288.



61. Real-time seam defect identification for Al alloys in robotic arc welding using optical spectroscopy and integrating learning / Z. Zhang, W. Ren, Z. Yang, G. Wen // Measurement. – 2020. – Vol. 156. – P. 107546. – DOI: 10.1016/j.measurement.2020.107546.



62. Comparative study of microstructure evaluation and mechanical properties of 4043 aluminum alloy fabricated by wire-based additive manufacturing / Q. Miao, D. Wu, D. Chai, Y. Zhan, G. Bi, F. Niu, G. Ma // Materials and Design. – 2020. – Vol. 186. – P. 108205. – DOI: 10.1016/j.matdes.2019.108205.



63. Ultrasonic phased array inspection of a wire + arc additive manufactured (WAAM) sample with intentionally embedded defects / Y. Javadi, C.N. MacLeod, S.G. Pierce, A. Gachagan, D. Lines, C. Mineo, J. Ding, S. Williams, M. Vasilev, E. Mohseni, R. Su // Additive Manufacturing. – 2019. – Vol. 29. – P. 100806. – DOI: 10.1016/j.addma.2019.100806.



64. Horii T., Kirihara S., Miyamoto Y. Freeform fabrication of Ti–Al alloys by 3D micro-welding // Intermetallics. – 2008. – Vol. 16. – P. 1245–1249. – DOI: 10.1016/j.intermet.2008.07.009.



65. Fusion zone geometries, cooling rates and solidification parameters during wire arc additive manufacturing / W. Ou, T. Mukherjee, G.L. Knapp, Y. Wei, T. DebRoy // International Journal of Heat and Mass Transfer. – 2018. – Vol. 127. – P. 1084–1094. – DOI: 10.1016/j.ijheatmasstransfer.2018.08.111.



66. Development of wire + arc additive manufacture for the production of large-scale unalloyed tungsten components / G. Marinelli, F. Martina, S. Ganguly, S. Williams // International Journal of Refractory Metals and Hard Materials. – 2019. – Vol. 82. – P. 329–335. – DOI: 10.1016/j.ijrmhm.2019.05.009.



67. Microstructure and thermal properties of unalloyed tungsten deposited by wire + arc additive manufacture / G. Marinelli, F. Martina, H. Lewtas, D. Hancock, S. Mehraban, N. Lavery, S. Ganguly, S. Williams // Journal of Nuclear Materials. – 2019. – Vol. 522. – P. 45–53. – DOI: 10.1016/j.jnucmat.2019.04.049.



68. Control of the chemical composition distribution in deposited metal by wire and arc-based additive manufacturing / T. Abe, D. Mori, K. Sonoya, M. Nakamura, H. Sasahara // Precision Engineering. – 2019. – Vol. 55. – P. 231–239. – DOI: 10.1016/j.precisioneng.2018.09.010.



69. Wire and arc additive manufacturing of a Ni-rich NiTi shape memory alloy: Microstructure and mechanical properties / Z. Zeng, B.Q. Cong, J.P. Oliveira, W.C. Ke, N. Schell, B. Peng, Z.W. Qi, F.G. Ge, W. Zhang, S.S. Ao // Additive Manufacturing. – 2020. – Vol. 32. – P. 101051. – DOI: 10.1016/j.addma.2020.101051.



70. Кузнецов М.А., Крампит М.А. Проектирование 3D-принтера для электродугового послойного выращивания металлических изделий // Инновации в информационных технологиях, машиностроении и автотранспорте: сборник материалов II Международной научно-практической конференции / ФГБУ ВО КузГТУ. – Кемерово: Изд-во КузГТУ, 2018. – С. 151–153.



71. Structural and chemical analysis of 3D printed metal products / M.A. Kuznetsov, E.A. Zernin, M.A. Krampit, V.I. Danilov, G.V. Shlyakhova // International Journal of Advanced Science and Technology. – 2019. – Vol. 28, iss.15. – P. 699–709.



72. Krampit A.G., Krampit M.A. Determination of a wire heat temperature under a pulse-arc welding condition by means of a calculation and graphic method // Applied Mechanics and Materials. – 2014. – Vol. 682. – P. 392–396. – DOI: 10.4028/www.scientific.net/AMM.682.392.

Благодарности. Финансирование

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 18-38-00036 и Программой фундаментальных научных исследований государственных академий наук на 2013–2020 годы (Проект №23.2.1).

Для цитирования:

Механические и трибологические свойства металлической стенки выращенной электродуговым способом в среде защитных газов / М.А. Кузнецов, В.И. Данилов, М.А. Крампит, Д.А. Чинахов, М.С. Слободян // Обработка металлов (технология, оборудование, инструменты). – 2020. – Т. 22, № 3. – С. 18–32. – DOI: 10.17212/1994-6309-2020-22.3-18-32.

For citation:

Kuznetsov M.A., Danilov V.I., Krampit M.A., Chinakhov D.A., Slobodyan M.S. Mechanical and tribological properties of a metal wall grown by an electric arc method in an atmosphere of shielding gas. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2020, vol. 22, no. 3, pp. 18–32. DOI: 10.17212/1994-6309-2020-22.3-18-32. (In Russian).

Просмотров: 144