ОБРАБОТКА МЕТАЛЛОВ

ТЕХНОЛОГИЯ • ОБОРУДОВАНИЕ • ИНСТРУМЕНТЫ
Print ISSN: 1994-6309    Online ISSN: 2541-819X
English | Русский

Последний выпуск
Том 22, № 3 Июль - Сентябрь 2020

Взаимосвязь температуры и силы резания с износом и вибрациями инструмента при токарной обработке металлов

Том 22, № 3 Июль - Сентябрь 2020
Авторы:

Лапшин Виктор Петрович,
Христофорова Вероника Владимировна,
Носачев Сергей Викторович
DOI: http://dx.doi.org/10.17212/1994-6309-2020-22.3-44-58
Аннотация

Введение. Процессы, протекающие в станке при резании металлов, взаимосвязаны друг с другом. В процессе резания сложная динамика обработки включает в себя как быстроизменяющиеся факторы, так и факторы, носящие более эволюционный (медленный) характер. Под такими факторами подразумеваем: изменения стационарных составляющих сил резания, температуры в зоне обработки и износ инструмента. На сегодня единой и непротиворечивой математической модели, описывающей такую взаимосвязь, не существует. Поэтому в статье предложен подход, основанный на обработке экспериментальных данных, полученных в серии экспериментов, позволяющий выявить структуру обратных связей, формируемых при резании и связывающих между собой подсистемы, описывающие силовую, тепловую и вибрационную реакцию со стороны процесса резания на формообразующие движения инструмента. Цель работы. За счет формирования непротиворечивой модели связи между подсистемами, описывающими силовую, тепловую и вибрационную реакцию со стороны процесса резания на формообразующие движения инструмента, получить описание механизма самоорганизации процесса резания в процессе эволюционных изменений инструмента. Такой механизм нужен для поиска некоторого режима функционирования системы резания, при котором может стабилизироваться дальнейший износ режущего клина, сила резания, температура в зоне резания и вибрации инструмента. В работе исследован процесс обработки металлов резание на токарном станке для случая продольного точения изделия. Методы исследования. Исследования состоят из серии натурных экспериментов на реальном оборудовании с использованием современного измерительного стенда STD.201-1, позволяющего одновременно измерять силовую, температурную и вибрационную составляющие реакции со стороны процесса резания на формообразующие движения инструмента. Для обработки и анализа полученных экспериментальных данных использовался пакет математических программ Matlab, в котором была разработаны подпрограмма, позволяющая провести спектральный анализ вибрационных сигналов, а также графическую интерпретацию измеренных величин. Результаты и обсуждение. Приведены результаты обработки экспериментальных данных, в частности, спектры вибрационных сигналов, получены зависимости сил и температуры от износа инструмента, а также выявлено влияние износа на вибрационную динамику процесса резания. Проведена оценка влияния энергии вибраций инструмента на температурное поле в зоне резания. Основным выводом по работе является выдвинутое нами положение о самоорганизации системы резания через процесс эволюции инструмента, выражающийся в износе режущего клина, целью которого служит формирование некоторого квазистационарного режима резания.


Ключевые слова: нелинейная динамика, вибрации, процесс резания, температура резания

Список литературы

1. Tool wear detection and fault diagnosis based on cutting force monitoring / S.N. Huang, K.K. Tan, Y.S. Wong, C.W. De Silva, H.L. Goh, W.W. Tan // International Journal of Machine Tools and Manufacture. – 2007. – Vol. 47, iss. 3–4. – P. 444–451. – DOI: 10.1016/j.ijmachtools.2006.06.011.



2. Tool condition monitoring in turning using statistical parameters of vibration signal / H. Arslan, A.O. Er, S. Orhan, E. Aslan // International journal of acoustics and vibration. – 2016. – Vol. 21, N 4. – P. 371–378. – DOI: 10.20855/ijav.2016.21.4432.



3. Alonso F.J., Salgado D.R. Application of singular spectrum analysis to tool wear detection using sound signals // Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. – 2005. – Vol. 219, iss. 9. – P. 703–710. – DOI: 10.1243/095440505X32634.



4. Dimla Sr D.E., Lister P.M. On-line metal cutting tool condition monitoring. I: Force and vibration analyses // International Journal of Machine Tools and Manufacture. – 2000. – Vol. 40, iss. 5. – P. 739–768. – DOI: 10.1016/S0890-6955(99)00084-X.



5. Tool wear evaluation by vibration analysis during end milling of AISI D3 cold work tool steel with 35 HRC hardness / S. Orhan, A.O. Er, N. Camuscu, E. Aslan // NDT & E International. – 2007. – Vol. 40, iss. 2. – P. 121–126. – DOI: 10.1016/j.ndteint.2006.09.006.



6. Tobias S.A. Vibraciones en máquinas-herramientas. – Bilboa: Ediciones Urmo, 1961.



7. Namachchivaya S., Beddini. Spindle speed variation for the suppression of regenerative chatter // Journal of Nonlinear Science. – 2003. – Vol. 13. – P. 265–288. – DOI: 10.1007/s00332-003-0518-4.



8. Wahi P., Chatterjee A. Regenerative tool chatter near a codimension 2 Hopf point using multiple scales // Nonlinear Dynamics. – 2005. – Vol. 40, iss. 4. – P. 323–338.



9. Stépán G., Insperger T., Szalai R. Delay, parametric excitation, and the nonlinear dynamics of cutting processes // International Journal of Bifurcation and Chaos. – 2005. – Vol. 15, N 09. – P. 2783–2798. – DOI: 10.1142/S0218127405013642.



10. Nonlinear behaviour of the regenerative chatter in turning process with a worn tool: forced oscillation and stability analysis / H. Moradi, F. Bakhtiari-Nejad, M.R. Movahhedy, M.T. Ahmadian // Mechanism and Machine Theory. – 2010. – Vol. 45, iss. 8. – P. 1050–1066. – DOI: 10.1016/j.mechmachtheory.2010.03.014.



11. Nonlinear dynamics of a machining system with two interdependent delays / A.M. Gouskov, S.A. Voronov, H. Paris, S.A. Batzer // Communications in Nonlinear Science and Numerical Simulation. – 2002. – Vol. 7, N 4. – P. 207–221. – DOI: 10.1016/S1007-5704(02)00014-X.



12. Hahn R.S. On the theory of regenerative chatter in precision grinding operation // Transactions of American Society of Mechanical Engineers. – 1954. – Vol. 76. – P. 356–260.



13. Tobias S.A., Fishwick W. Theory of regenerative machine tool chatter // The Engineer. – 1958. – Vol. 205, N 7. – P. 199–203.



14. Merritt H.E. Theory of self-excited machine-tool chatter: contribution to machine-tool chatter research – 1 // Journal of Manufacturing Science and Engineering. – 1965. – Vol. 87, iss. 4. – P. 447–454. – DOI: 10.1115/1.3670861.



15. Grabec I. Chaos generated by the cutting process // Physics Letter A. – 1986. – Vol. 117, iss. 8. – P. 384–386. – DOI: 10.1016/0375-9601(86)90003-4.



16. Balachandran B. Nonlinear dynamics of milling process // Philosophical Transactions of The Royal Society A: Mathematical Physical and Engineering Sciences. – 2001. – Vol. 359 (1781). – P. 793–819. – DOI: 10.1098/rsta.2000.0755.



17. Stepan G. Modelling nonlinear regenerative e?ects in metal cutting // Philosophical Transactions of The Royal Society A: Mathematical Physical and Engineering Sciences. – 2001. – Vol. 359 (1781). – P. 739–757. – DOI: 10.1098/rsta.2000.0753.



18. Litak G. Chaotic vibrations in a regenerative cutting process // Chaos Solitons & Fractals. – 2002. – Vol. 13, iss. 7. – P. 1531–1535. – DOI: 10.1016/S0960-0779(01)00176-X.



19. Гуськов А.М., Воронов С.А., Квашнин А.С. Влияние крутильных колебаний на процесс вибросверления // Вестник МГТУ им. Н.Э. Баумана. Серия: Машиностроение. – 2007. – № 1 (66). – C. 3–19.



20. Васин С.А., Васин Л.А. Синергетический подход к описанию природы возникновения и развития автоколебаний при точении // Наукоемкие технологии в машиностроении. – 2012. – № 1. – С. 11–16.



21. Воронин А.А. Влияние ультразвуковых колебаний на процесс резания жаропрочных сплавов // Станки и инструмент. – 1960. – № 11. – С. 15–18.



22. Zakovorotny V.L., Lapshin V.P., Babenko T.S. Assessing the regenerative effect impact on the dynamics of deformation movements of the tool during turning // Procedia Engineering. – 2017. – Vol. 206. – P. 68–73. – DOI: 10.1016/j.proeng.2017.10.439.



23. Bifurcation of stationary manifolds formed in the neighborhood of the equilibrium in a dynamic system of cutting / V.L. Zakovorotny, A.D. Lukyanov, A.A. Gubanova, V.V. Khristoforova // Journal of Sound and Vibration. – 2016. – Vol. 368. – P. 174–190. – DOI: 10.1016/j. jsv.2016.01.020.



24. Zakovorotny V., Lapshin V., Gvindjiliya V. Tool wear due to deformation displacements during metal turning // AIP Conference Proceedings. – 2019. – Vol. 2188, N 1. – P. 030002. – DOI: 10.1063/1.5138395.



25. Zakovorotny V.L., Lapshin V.P., Babenko T.S. Modeling of tool wear: irreversible energy transformations // Russian Engineering Research. – 2018. – Vol. 38, N 9. – P. 707–708. – DOI: 10.3103/S1068798X18090290.



26. Жарков И.Г. Вибрации при обработке лезвийным инструментом. – Л.: Машиностроение, 1986. – 184 с.



27. Марков А.И. Ультразвуковое резание труднообрабатываемых материалов. – М.: Машиностроение, 1968. – 367 с.



28. Макаров А.Д. Оптимизация процессов резания. – М.: Машиностроение, 1976. – 278 с.



29. Заковоротный В.Л., Флек М.Б. Динамика процесса резания. Синергетический подход. – Ростов н/Д.: Терра, 2006. – 880 c. – ISBN 5-98254-055-2.



30. Рыжкин А.А. Синергетика изнашивания инструментальных режущих материалов (трибоэлектрический аспект). – Ростов н/Д.: Изд. центр ДГТУ, 2004. – 323 с. – ISBN 5-7890-0307-9.



31. Influence of the temperature in the tool-workpiece contact zone on the deformational dynamics in turning / V.P. Lapshin, I.A. Turkin, V.V. Khristoforova, T.S. Babenko // Russian Engineering Research. – 2020. – Vol. 40, iss. 3. – P. 259–265. – DOI: 10.3103/S1068798X20030156.



32. Lapshin V.P., Babenko T.S., Moiseev D.V. Experimental evaluation of influence of tool wear on quality of turning // Proceedings of the 4th International Conference on Industrial Engineering ICIE 2018. – Cham: Springer, 2018. – P. 853–859. – DOI: 10.1007/978-3-319-95630-5_89.



 



33. Lapshin V., Moiseev D., Minakov V. Diagnosing cutting tool wear after change of cutting forces during turning // AIP Conference Proceedings. – 2019. – Vol. 2188, iss. 1. – P. 030001. – DOI: 10.1063/1.5138394.



34. Лапшин В.П. Модифицированный оператор Вольтерра как способ моделирования температуры при металлообработке // Тепловые процессы в технике. – 2019. – Т. 11, № 11. – С. 505–513.



35. Бордачев Е.В., Лапшин В.П. Математическое моделирование температуры в зоне контакта инструмента и изделия при токарной обработке металлов // Вестник Донского государственного технического университета. – 2019. – Т. 19, № 2. – С. 130–137. – DOI: 10.23047/1992-5980-2019-19-2-130-137.

Благодарности. Финансирование

Исследование выполнено при финансовой поддержке гранта РФФИ №19-08-00022.

Для цитирования:

Лапшин В.П., Христофорова В.В., Носачев С.В. Взаимосвязь температуры и силы резания с износом и вибрациями инструмента при токарной обработке металлов // Обработка металлов (технология, оборудование, инструменты).  –  2020.  –  Т.  22, № 3. – С. 44–58. – DOI: 10.17212/1994-6309-2020-22.3-44-58.

For citation:

Lapshin V.P., Khristoforova V.V., Nosachev S.V. Relationship of temperature and cutting force with tool wear and vibration in metal turning. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2020, vol. 22, no. 3, pp. 44–58. DOI: 10.17212/1994-6309-2020-22.3-44-58. (In Russian).

Просмотров: 48