Introduction. Nowadays, the development of alloys with a high glass-forming ability and the study of its physical and mechanical properties are among the most important directions in materials science. Iron-based multi-component alloys with high glass-forming ability have high corrosion resistance, wear resistance and relatively low cost, which makes it promising for application on the working surfaces of parts that work under conditions of abrasive wear and aggressive environment. Methods of thermal spraying (plasma spraying, detonation spraying, high-velocity oxy-fuel spraying, etc.) allow producing coatings with amorphous structure from iron-based alloys. Due to the process features, detonation spraying allows to obtain high quality coatings with the structure of metal glass in comparison with other methods of thermal spraying. The purpose of the work is to study the influence of phase composition of detonation coatings from a multi-component iron-based alloy on the resistance to atmospheric corrosion in conditions of neutral salt spray. Detonation coatings from amorphous alloy Fe66Cr10Nb5B19 obtained at different charges of explosive mixture are investigated. The methods of investigation: testing of detonation coatings under simulated conditions of atmospheric corrosion in salt spray chamber according to ASTM B117 in an atmosphere of a spray 5% sodium chloride solution in water for 600 hours at room temperature, as well as conducting X-ray phase and metallographic studies of coatings before and after tests. Results and Discussion. The results of investigation the phase composition and morphology of the coatings after the tests showed its high corrosion resistance in a neutral salt fog containing a large amount of chlorine anions. On the cross sections of those coatings no traces of corrosion penetration were found, which confirms the effectiveness of detonation coatings with the structure of metal glass from the alloy Fe66Cr10Nb5B19 for protection of parts that work under conditions of high atmospheric humidity, without sealing the surface.
1. Inoue A., Takeuchi A. Recent development and application products of bulk glassy alloys. Acta Materialia, 2011, vol. 59, iss. 6, pp. 2243–2267. DOI: 10.1016/j.actamat.2010.11.027.
2. Lu Z.P., Liu C.T., Thompson J.R., Porter W.D. Structural amorphous steels. Physical Review Letters, 2004, vol. 92, iss. 24. pp. 501–504. DOI: 10.1103/physrevlett.92.245503.
3. Pang S., Zhang T., Asami K., Inoue A. Synthesis of Fe–Cr–Mo–C–B–P bulk metallic glasses with high corrosion resistance. Acta Materialia, 2002, vol. 50, iss. 3, pp. 489–497. DOI: 10.1016/s1359-6454(01)00366-4.
4. Kawakita J., Kuroda S., Fukushima T., Kodama T. Improvement of corrosion resistance of high-velocity oxyfuel-sprayed stainless steel coatings by addition of molybdenum. Journal of Thermal Spray Technology, 2005, vol. 14, pp. 224–230. DOI: 10.1361/10599630523782.
5. Masumoto T., Hashimoto K. Chemical properties of amorphous metals. Annual Review of Material Science, 1978, vol. 8, pp. 215–233.
6. Naka M., Hashimoto K., Masumoto T. Effects of annealing on the corrosion of glassy chromium-containing alloys. Science Reports of the Research Institutes, 1977, vol. 26, pp. 283–289.
7. Keryvin V., Hoang V.H., Shen J. Hardness, toughness, brittleness and cracking systems of an iron-based bulk metallic glass by indentation. Intermetallics, 2009, vol. 17, pp. 211–217. DOI: 10.1016/j.intermet.2008.08.017.
8. Gu X.J., Poon S.J., Shiflet G.J., Widom M. Ductility improvement of amorphous steels: roles of shear modulus and electronic structure. Acta Materialia, 2008, vol. 56, pp. 88–94. DOI: 10.1016/j.mser.2015.12.001. DOI: 10.1016/j.actamat.2007.09.011.
9. Qiao J., Jia H., Liaw P.K. Metallic glass matrix composites. Materials Science and Engineering: R: Reports, 2016, vol. 100, pp. 1–69. DOI: 10.1016/j.mser.2015.12.001.
10. Stoica M., Eckert J., Roth S., Zhang H.F., Schultz J., Wang W.H. Mechanical behavior of Fe65.5Cr4Mo4Ga4P12C5B5.5 bulk metallic glass. Intermetallics, 2005, vol. 13, pp. 764–769. DOI: 10.1016/j.intermet.2004.12.016.
11. Berger J.E., Schulz R., Savoie S., Gallego J., Kiminami C.S., Bolfarini C., Botta W.J. Wear and corrosion properties of HVOF coatings from Superduplex alloy modified with addition of boron. Surface and Coatings Technology, 2017, vol. 309, pp. 911–919. DOI: 10.1016/j.surfcoat.2016.10.062.
12. Guo Y., Koga G.Y., Jorge A.M., Savoie S., Schulz R., Kiminami C.S., Bolfarini C., Botta W.J. Microstructural investigation of Fe-Cr-Nb-B amorphous/nanocrystalline coating produced by HVOF. Materials & Design, 2016, vol. 111, pp. 608–615. DOI: 10.1016/j.matdes.2016.09.027.
13. Wang Y., Xing Z.Z., Luo Q., Rahman A., Jiao J., Qu S.J., Zheng Y.G., Shena J. Corrosion and erosion–corrosion behaviour of activated combustion high-velocity air fuel sprayed Fe-based amorphous coatings inchloride-containing solutions. Corrosion Science, 2015, vol. 98, pp. 339–353. DOI: 10.1016/j.corsci.2015.05.044.
14. Zhang C., Chan K.C., Wu Y., Liu L. Pitting initiation in Fe-based amorphous coatings. Acta Materialia, 2012, vol. 60, pp. 4152–4159. DOI: 10.1016/j.actamat.2012.04.005.
15. Jayaraj J., Kim K.B., Ahn H.S., Fleury E. Corrosion mechanism of N-containing Fe–Cr–Mo–Y–C–B bulk amorphous alloys in highly concentrated HCl solution. Materials Science and Engineering: A, 2007, vol. 449–451, pp. 517–520. DOI: 10.1016/j.msea.2006.02.418.
16. Yang Y., Zhang C., Peng Y., Yu Y., Liu L. Effects of crystallization on the corrosion resistance of Fe-based amorphous coatings. Corrosion Science, 2012, vol. 59, pp. 10–19. DOI: 10.1016/j.corsci.2012.02.003.
17. Koga G.Y., Jorge Junior A.M., Roche V., Nogueira R.P., Schulz R., Savoie S., Melle A.K., Loable C., Bolfarini C., Kiminami C., Botta W. Production and corrosion resistance of thermally sprayed fe-based amorphous coatings from mechanically milled feedstock powders. Metallurgical and Materials Transactions A, 2018, vol. 49, pp. 4860–4870. DOI: 10.1007/s11661-018-4785-y.
18. Xie L., Wang Y.-M., Xiong X., Chen Z.-K., Wang Y.-L. E?ects of oxygen fuel rate on microstructure and wear properties of detonation sprayed iron-based amorphous coatings. Materials Transactions Received, 2018, vol. 3, pp. 1867–1871. DOI: 10.2320/matertrans.M2018273.
19. Kuchumova I.D., Batraev I.S., Cherkasova N.Y., Rybin D.K., Ukhina A.V., Botta W.J., Koga G.Y., Jorge A.M. The influence of the O2/C2H2 ratio on the structure and properties of Fe66Cr10Nb5B19 detonation coatings. Materials Today: Proceedings, 2020, vol. 25, pp. 384–386. DOI: 10.1016/j.matpr.2019.12.098.
20. Zhou Z., Wang L., Wang F., Liu Y. Formation and corrosion behavior of Fe-based amorphous metallic coatings prepared by detonation gun spraying. Transactions of Nonferrous Metals Society of China, 2009, vol. 19, pp. 634–638. DOI: 10.1016/S1003-6326(10)60123-9.
21. Wu H., Lan X., Liu Y., Li F., Zhang W., Chen Z., Zai X., Zeng H. Fabrication, tribological and corrosion behaviors of detonation gun sprayed Fe-based metallic glass coating. Transactions of Nonferrous Metals Society of China, 2016, vol. 26, pp. 1629–1637. DOI: 10.1016/S1003-6326(16)64271-1.
22. ASTM B117–19. Standard Practice for Operating Salt Spray (Fog) Apparatus. West Conshohocken, PA, ASTM International, 2019. DOI: 10.1520/B0117-19.
23. Sergienko V.I., Denisenko Yu.P., Dobrzhansky V.G., Ognev Yu.F., Berdiev O.Sh., Dushina N.E. Laboratornye ispytaniya korrozionnoi stoikosti legkikh splavov metodom solenogo tumana putem modelirovaniya subtropicheskogo klimata [The bench tests of light alloys for corrosion resistance by a salt fog procedure while modelling a subtropical climate]. Vestnik Inzhenernoi shkoly Dal'nevostochnogo federal'nogo universiteta = FEFU: School of Engineering Bulletin, 2015, no. 3, pp. 85–91.
24. Tretyakov V.I., Bogomolova L.K., Guzova T.S., Krupinina O.A. Metod otsenki korrozionnoi stoikosti alyuminievykh profilei dlya svetoprozrachnykh ograzhdayushchikh kostruktsii pod deistviem solyanogo tumana [The method of an estimation of corrosion firmness of a paint and varnish covering of aluminium profiles for translucent envelopes protecting designs under the influence of a hydrochloric fog]. Vestnik MGSU = Mechanics and Mechanical Engineering, 2011, no. 3, pp. 116–122.
25. Kuchumova I.D., Batraev I.S., Ulianitsky V.Yu., Shtertser A.A., Gerasimov K.B., Ukhina A.V., Bulina N.V., Bataev I.A., Koga G.Y., Guo Y., Botta W.J., Kato H., Wada T., Bokhonov B.B., Dudina D.V., Jorge A.M. Formation of metallic glass coatings by detonation spraying of a Fe66Cr10Nb5B19 powder. Metals, 2019, vol. 9. DOI: 10.3390/met9080846. Available at: https://www.mdpi.com/2075-4701/9/8/846.
26. Ulianitsky V.Yu., Shtertser A.A., Zlobin S.V., Smurov I.Yu. Computer-controlled detonation spraying: from process fundamentals toward advanced applications. Journal of Thermal Spray Technology, 2011, vol. 20, pp. 791–801. DOI: 10.3390/met9121244.
27. Ulianitsky V.Yu., Batraev I.S., Shtertser A.A., Dudina D.V., Bulina N.V., Smurov I.Yu. Detonation spraying behaviour of refractory metals: case studies for Mo and Ta-based powders. Advanced Powder Technology, 2018, vol. 29. pp. 1859–1864. DOI: 10.1016/j.apt.2018.04.023.
28. Inoue A. Bulk Amorphous alloys: preparation and fundamental characteristics. Uetikon-Zurich, Trans Tech Publications, 1998.
29. Inoue A. Stabilization of supercooled liquid and opening-up of bulk glassy alloys. Proceedings of the Japan Academy. Series B, 1997, vol. 73, pp. 19–24. DOI: 10.2183/pjab.73.19.
30. Inoue A. Recent progress of Zr-based bulk amorphous alloys. Science Reports of the Research Institutes. Tohoku Daigaku Kenkyujo hokoku, Series A, 1996, vol. 42, pp. 1–12.
31. Heller D.K., Fahrenholtz W.G., O'Keefe M.J. The effect of post-treatment time and temperature on cerium-based conversion coatings on Al 2024-T3. Corrosion Science, 2010, vol. 52, iss. 2, pp. 360–368. DOI: 10.1016/j.corsci.2009.09.023.
32. Zeng Z., Sakoda N., Tajiri T., Kuroda S. Structure and corrosion behavior of 316L stainless steel coatings formed by HVAF spraying with and without sealing. Surface and Coatings Technology, 2008, vol. 203, iss. 3–4, pp. 284–290. DOI: 10.1016/j.surfcoat.2008.09.011.
33. Zhang J., Wang Z., Lin P., Lu W., Zhou Z., Jiang S. Effect of sealing treatment on corrosion resistance of plasma-sprayed NiCrAl/Cr2O3-8 wt.%TiO2 coating. Journal of Thermal Spray Technology, 2010, vol. 20, iss. 3, pp. 508–513. DOI: 10.1007/s11666-010-9528-6.
Funding
The reported research was funded by the Russian Foundation for Basic Research and the government the Novosibirsk region, project 19-43-543034 r_mol_a.
Acknowledgements
The authors are grateful to Konstantin B. Gerasimov for his help in conducting DSC investigation.
Kuchumova I.D., Batraev I.S., Cherkasova N.Y., Ukhina A.V., Shtertser A.A., Jorge A.M. The influence of salt fog exposure on corrosion resistance of detonation coatings Fe66Cr10Nb5B19. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2020, vol. 22, no. 3, pp. 95-105.DOI: 10.17212/1994-6309-2020-22.3-95-105. (In Russian).