
Introduction: Equipment using at hazardous production facilities is in most cases made of the structural steels, which are subject to severe corrosion damage in contact with aggressive environments. In aggressive environments, the process of corrosion destruction of the material has a multi-component nature. The multicomponent nature of corrosion processes still leaves the question as to what factors have a greater effect on the process of corrosion. In the literature, the size of the grain structure is indicated as the main corrosion-determining factor. However, in addition to the sizes of the grain, corrosion is also affected by the corresponding factor of grain size variation, characterizing the dispersion of the system as a whole. Therefore, differentiation of factors affecting the course of corrosion processes remains an urgent problem. Purpose: To analyze the possibility of using the grain size variation factor as a diagnostic parameter for determining the rate of the corrosive destruction of structural steel. In article were studied a heat-treated steel samples 15HSND, 09G2S and St3 made from rolled steel. Methods of research: For the study of steels 15KHSND, St3 and 09G2S was applied in the work: scanning electron and optical microscopes-to study the grain structure and intergranular boundaries; SIAMS 700 software package-to find the boundaries and average statistical data on the grain structure; a portable x-ray fluorescence chemical analyzer-to determine the chemical composition of the samples under study; laboratory balance with a measurement error of 0.001 g – to measure the mass of the samples. Results and Discussion: It is established that for the rate of corrosion of structural steels and the factor of heterogeneity, a single satisfactory linear correlation is observed, which can be used to predict the corrosion-hazardous States of structures. It is noted that the loss of some values from the General regression curve can be associated with the processes of reducing distortions in the crystal lattices of steel during a certain heat treatment. The severity of these processes for the considered steels may be different due to the presence of different amounts of alloying elements in their composition.
1. Malakhov A.I., Zhukov A.P. Osnovy materialovedeniya i teoriya korrozii [Fundamentals of materials science and corrosion theory]. Moscow, Vysshaya Shkola Publ., 1989. 516 p.
2. Nesterov D., Sidorchuk M., Millionshchikov V., Belikova T., Yastrebova N. Korroziya rezervuarov dlya khraneniya nefti i nefteproduktov [Corrosion of tanks for oil and petroleum products]. Tekhnadzor = Technical Supervision, 2015, no. 11 (108), pp. 540–541.
3. Nalli K. Corrosion and its mitigation in the oil and gas industry. An overview. PetroMin Pipeliner Report, 2010, January–March, pp. 10–16.
4. Collacott R.A. Structural integrity monitoring. London, New York, Chapman and Hall, 1985 (Russ. ed.: Kollakot R.A. Diagnostika povrezhdenii. Moscow, Mir Publ., 1989. 512 p.).
5. Zhuk N.P. Kurs korrozii i zashchity metallov [The rate of corrosion and protection of metals]. Moscow, Metallurgiya Publ., 1976. 472 p.
6. Tiwari A., Hihara L., Rawlins J., eds. Intelligent coatings for corrosion control. Amsterdam, Butterworth-Heinemann, 2014. 746 p. ISBN 9780124114678.
7. Polyanchukov V.G. Modern corrosion monitoring of complex systems in acid media – the bridge into the 21st century. Werkstoffe und Korrosion, 2001, vol. 52, no. 2, pp. 117–123.
8. Naganuma A., Fushimi K., Azumi K., Habazaki H., Konno H. Application of the multichannel electrode method to monitoring of corrosion of steel in an artificial crevice. Corrosion Science, 2010, vol. 52, no. 4, pp. 1179–1186. DOI: 10.1016/j.corsci.2010.01.005.
9. Introduction to corrosion monitoring. Metal Samples: Corrosion Monitoring Systems. Munford, AL, 2013. Available at: www.alspi.com/introduction.htm (accessed 18.08.2020).
10. Kong L., Qiao G., Zhang T., Song G. Steel bar corrosion monitoring by potentiostatic pulse method. Advanced Materials Research, 2011, vol. 163–167, pp. 2941–2944. DOI: 10.4028/www.scientific.net/AMR.163-167.2941.
11. Novikov V.F., Neradovskii D.F., Sokolov R.A. Ispol'zovanie kvazistaticheskikh petel' magnitnogo gisterezisa dlya kontrolya struktury stali [The using of quasi-static magnetic hysteresis loops to control steel structures]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie = Bulletin PNRPU. Mechanical engineering, materials science, 2016, vol. 18, no. 2, pp. 38–49. DOI: 10/15593/2224-9877/2016.2.03.
12. Pomazova A.V., Panova T.V., Gering G.I. Rol' faktorov formy zerennoi struktury v elektrokhimicheskoi korrozii kotel'nykh trub, izgotovlennykh iz uglerodistoi stali 20 [Role of grain structure form factors in electrochemical corrosion of boiler tubes made of carbon steel 20]. Praktika protivokorrozionnoi zashchity = Theory and Practice of Corrosion Protection, 2013, no. 3 (69), pp. 68–71.
13. Novikov V.F., Sokolov R.A., Neradovskiy D.F., Muratov K.R. A technique for predicting steel corrosion resistance. IOP Conference Series: Materials Science and Engineering, 2018, vol. 289, pp. 1–6. DOI: 10.1088/1757-899X/289/1/012013.
14. Li Y., Wang F.G., Liu G. Grain size effect on the electrochemical corrosion behavior of surface nanocrystallized low-carbon steel. Corrosion, 2004, vol. 60, no. 10, pp. 891–896. DOI: 10.5006/1.3287822.
15. Syugaev A.V., Lomaeva S.F., Reshetnikov S.M., Shuravin A.S., Sharafeeva E.V., Surnin D.V. The effect of the structure-phase state of iron-cementite nanocomposites on local activation processes. Protection of Metals, 2008, vol. 44, no. 4, pp. 395–399. DOI: 10.1134/S0033173208040097.
16. GOST 5639–82. Stali i splavy. Metody vyyavleniya i opredeleniya velichiny zerna [State Standard 5639–82. Steels and alloys. Methods of detection and determination of grain size]. Moscow, Standads Publ., 2003. 45 p.
17. Lezinskaya E.Ya. Metody otsenki strukturnoi neodnorodnosti metalla trub obolochek TVEL i chekhlov TVS iz korrozionno-stoikikh stalei i splavov [Evaluation methods for structure non uniformity of metal for cladding tubes and wrapper of corrosion-resistant steels and alloys]. Voprosy atomnoi nauki i tekhniki. Seriya: Fizika radiatsionnykh povrezhdenii i radiatsionnoe materialovedenie = Problems of Atomic Science and Technology. Physics of Radiation Effects and Radiation Materials Science, 2003, no. 3, pp. 108–112. (In Russian).
18. Lezinskaya E.Ya., Klyuev D.Yu., Nikolaenko Yu.N. Novyi metod otsenki raznozernistosti struktury trub iz nerzhaveyushchikh stalei i splavov [New method for assessing the inequigranular structure of pipes of stainless steels and alloys]. Teoriya i praktika metallurgii = Theory and Practice of Metallurgy, 2012, no. 1, pp. 68–73. (In Russian).
19. Grokhovskiy V.I. [Possibilities of digital microscopy in metallography]. Tsifrovaya mikroskopiya: materialy shkoly seminara [Digital microscopy. School-seminar materials]. Ekaterinburg, USTU-UPI Publ., 2001, pt. 1, pp. 18–20. (In Russian).
20. GOST 9.008–85. ESZKS. Metally i splavy. Metody opredeleniya pokazatelei korrozii i korrozionnoi stoikosti [State Standard 9.008–85. Unified system of corrosion and ageing protection. Metals and alloys. Methods for determination of corrosion and corrosion resistance indices]. Moscow, Standards Publ., 2004. 44 p.
21. Sokolov R.A., Novikov V.F., Muratov K.R., Venediktov A.N. Influence of surface treatment of construction steels on determination of internal stresses and grain sizes using X-ray diffractometry method. Materials Today: Proceedings, 2019, vol. 19, pt. 5, pp. 2584–2585. DOI: 10.1016/j.matpr.2019.09.015.
22. Schastlivtsev V.M., Mirzaev D.A., Yakovleva I.L. Struktura termicheski obrabotannoi stali [Structure of heat treated steel]. Moscow, Metallurgiya Publ., 1994. 288 p.
23. Callister W.D. Materials science and engineering: an introduction. 6th ed. Hoboken, NJ, Wiley, 2020. 848 p. ISBN 978-0471135760.
24. Gorelik S.S. Rekristallizatsiya metallov i splavov [Recrystallization of metals and alloys]. Moscow, Metallurgiya Publ., 1978. 568 p.
25. Kleiner L.M., Larinin D.M., Spivak L.V., Shatsov A.A. Phase and structural transformations in low-carbon martensitic steels. The Physics of Metals and Metallography, 2009, vol. 108, pp. 153–160. DOI: 10.1134/S0031918X09080080.
26. Babicheva R.I., Semenov A.S., Dmitriev S.V., Zhou K. Vliyanie zernogranichnykh segregatsii na temperatury martensitnogo prevrashcheniya v bikristallakh NiTi [Effect of grain boundary segregations on martensitic transformation temperatures in NiTi bi-crystals Pis'ma o materialakh = Letters on Materials, 2019, vol. 9, no. 2, pp. 162–167. DOI: 10.22226/2410-3535-2019-2-162-167.
27. Wollenberger H.J. Point defects. Physical Metallurgy. Ed. by R.W. Cahn, P. Haasen. Amsterdam, Elsevier, 1996, vol. 2, pp. 1621–1721. DOI: 10.1016/B978-044489875-3/50023-5.
28. Rohrer G.S. Structure and bonding in crystalline materials. Cambridge, New York, Cambridge University Press, 2004. 552 p. DOI: 10.1017/CBO9780511816116. ISBN 9780511816116.
29. Novikov I.I. Defekty kristallicheskogo stroeniya metallov [Defects in the crystal structure of metals]. Moscow, Metallurgiya Publ., 1975. 208 p.
30. Gao F., Heinisch H., Kurtz R.J. Diffusion of He interstitials in grain boundaries in α-Fe. Journal of Nuclear Materials, 2006, vol. 351, pp. 133–140. DOI: 10.1016/j.jnucmat.2006.02.015.
31. Hart E.W. On the role of dislocations in bulk diffusion. Acta Metallurgica, 1957, vol. 5, iss. 10, p. 597. DOI: 10.1016/0001-6160(57)90127-X.
32. Courtney Т.Н. Mechanical behavior of materials. Singapore, McGraw Hill, 2000. 752 p. ISBN 978-1577664253.
33. Li M., Kirk M.A., Baldo P.M., Xu D., Wirth B.D. Study of defect evolution by TEM with in situ ion irradiation and coordinated modeling. Philosophical Magazine, 2012, vol. 92, pp. 2048–2078. DOI: 10.1080/14786435.2012.662601.
34. Noyan I.C., Cohen J.B. Residual stress – measurement by diffraction and interpretation. New York, Springer-Verlag, 1987. 285 p. ISBN 978-1-4613-9570-6.
Sokolov R.A., Novikov V.F., Muratov K.R., Venediktov A.N. Determination of the relationship between the factor of grain size factor and the corrosion rate of structural steel. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2020, vol. 22, no. 3, pp. 106–125. DOI: 10.17212/1994-6309-2020-22.3-106-125. (In Russian).