
Introduction. One of the primary objectives in the development of promising aircraft products is to reduce the weight of the aircraft structure. This problem can be solved by applying new low density materials such as aluminum alloys alloyed with lithium (for example, Al-Cu-Li-Zn) in the design of parts. The use of these materials in aircraft construction is limited by the processing technology, which must be such as not to damage the material and not reduce its strength properties. Such technologies include processing by pressure with heating, when creep processes are activated and the material passes into a state close to superplasticity. The purpose of the work: assessment of the effect of pressure shaping of aluminum alloys Al-Cu-Li-Zn and Al-Zn-Mg-Cu in creep mode on strength. The paper investigates the influence of the technology of pressure shaping of aluminum alloys Al-Cu-Li-Zn and Al-Zn-Mg-Cu on the resistance to fatigue failure. The work uses a method that allows to determine the ultimate stresses using diagrams of the accumulation of irreversible deformations; method of forming thick plates (40 mm) in the creep mode. The previously selected optimum temperatures for forming the plates are used. A non-contact coordinate measuring system is used to perform surface inspection after shaping. Fractography of the fracture of samples of alloy Al-Cu-Li-Zn and Al-Zn-Mg-Cu after fatigue failure is performed. Mathematical modeling of the deformation process of plates in creep mode is carried out in the MSC.Marc package. As a result, a conservative evaluation of the endurance limit for aluminum alloys Al-Cu-Li-Zn and Al-Zn-Mg-Cu is obtained. The shaping of thick plates in the creep mode is carried out. More than 80% of the board surface is formed with a deviation of less than 1 mm from the target size. Fatigue tests of samples made of molded panels of alloys Al-Cu-Li-Zn and Al-Zn-Mg-Cu are carried out, fatigue curves are plotted. The fractography of the surface of the fatigue fracture showed the presence of oxides in the samples of alloy Al-Cu-Li-Zn, in contrast to alloy Al-Zn-Mg-Cu. The results of fatigue tests are discussed, showing that the characteristics of the technological process of shaping and heat treatment do not deteriorate the fatigue properties of the investigated alloys. Comparative tests show that alloy Al-Cu-Li-Zn has higher fatigue characteristics. Mathematical modeling show that the use of the Boyle-Norton steady-state creep law is not enough to describe the process of plate forming. The necessity of setting the inverse problem of creep age forming is noted, where the coordinates of the punches of the loading device should act as boundary conditions.
1. Fridlyander I.N., Senatorova O.G., Tkachenko E.A., Molostova I.I. Razvitie i primenenie vysokoprochnykh splavov sistemy Al-Zn-Mg-Cu dlya aviakosmicheskoi tekhniki [Development and application of high-strength alloys of the Al-Zn-Mg-Cu system for aircraft engineering]. Vse materialy. Entsiklopedicheskii spravochnik = All materials. Encyclopedic reference book, 2008, no. 8, pp. 17–21.
2. Oglodkov M.S. Zakonomernosti izmeneniya struktury i svoistv katanykh polufabrikatov iz splava V-1461 v zavisimosti ot tekhnologicheskikh parametrov proizvodstva i termicheskoi obrabotki. Avtoref. diss. kand. tekhn. nauk [Regularities of alteration structure and properties of rolled semi-finished products from alloy V-1461, depending on technological parameters of production and heat treatment. Author's abstract of PhD eng. sci. diss.]. Moscow, 2013. 26 p.
3. Khokhlatova L.B., Kolobnev N.I., Oglodkov M.S., Filatov A.A., Popova Yu.A. Perspektiva primeneniya plit iz vysokoprochnogo splava V-1461 ponizhennoi plotnosti v samoletnykh konstruktsiyakh [The prospect of using slabs of high-strength alloy B-1461 of reduced density in aircraft structures]. Vse materialy. Entsiklopedicheskii spravochnik = All materials. Encyclopedic reference book, 2014, no. 2, pp. 16–22.
4. Khokhlatova L.B., Kolobnev N.I., Oglodkov M.S., Lukina E.A., Sbitneva S.V. Izmenenie fazovogo sostava v zavisimosti ot rezhimov stareniya i struktury polufabrikatov splava V-1461 [Variation of phase composition as a function of the mode of aging and structure of semiproducts from alloy V-1461]. Metallovedenie i termicheskaya obrabotka metallov = Metal Science and Heat Treatment, 2012, no. 6, pp. 20–24. (In Russian).
5. Gorev В.V., Klopotov I.D., Raevskaya G.A., Sosnin O.V. K voprosu obrabotki materialov davleniem v rezhime polzuchesti [To the problem of processing of materials by pressure in the creep mode]. Prikladnaya mekhanika i tekhnicheskaya fizika = Applied mechanics and technical physics,1980, no. 5, pp. 185–191. (In Russian).
6. Miodushevskij P.V., Raevskaja G.A., Sosnin O.V. Sposob formoobrazovaniya detalei i ustroistvo dlya ego osushchestvleniya [Method of shaping parts and appparatus for performing the method]. Patent RF, no. 2056197, 1996.
7. Klopotov I.D., Lyubashevskaya I.V., Raevskaya G.A., Rublevsky L.L., Sosnin O.V. Ustroistvo formovaniya [Molding device]. Patent RF, no. 2251464, 2005.
8. Zakharchenko K.V., Kapustin V.I., Zubkov V.P., Talanin A.V., Maksimovski E.A. The influence of coating technologies on stress-strain characteristics of the sample at periodic loading. Journal of Physics: Conference Series, 2017, vol. 894, no. 1, p. 012032. DOI: 10.1088/1742-6596/894/1/012032.
9. Raevskaya G.A., Zakharchenko K., Larichkin A. Determination of optimum parameters of the technological process for plates forming from V95 and V-1461 alloys in creep applied in aircrafts constructed by "Sukhoi design bureau". Journal of Physics: Conference Series, 2017, vol. 894, no. 1, p. 012078. DOI: 10.1088/1742-6596/894/1/012078.
10. Larichkin A.Yu., Zakharchenko K.V., Gorev B.V., Kapustin V.I. Fizicheskoye modelirovaniye tekhnologicheskogo protsessa formoobrazovaniya elementov konstruktsiy iz alyuminiyevogo splava B95 v usloviyakh polzuchesti [Experimental modeling of technological process of pure aluminum alloy (Al-Zn-Mg-Cu) structural elements forming under creep]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2016, no. 1 (70), pp. 6–15. DOI: 10.17212/1994-6309-2016-1-6-15.
11. Peterson R.E. Stress concentration factors. New York, Wiley, 1974. 235 p.
12. Larichkin A., Zakharchenko K., Gorev B., Kapustin V., Maksimovskiy E. Influence of the creep ageing process on the fatigue properties of components from V95pchT2 (analog 7175T76) and V95ochT2 (analog 7475) aluminium alloys. Journal of Physics: Conference Series, 2017, vol. 894, no. 1, p. 012050. DOI: 10.1088/1742-6596/894/1/012050.
13. Erisov Ya.A., Grechnikov F.V., Oglodkov M.S. Vliyanie rezhimov izgotovleniya listov iz splava V-1461 na kristallografiyu struktury i anizotropiyu svoistv [The influence of fabrication modes of sheets of V-1461 alloy on the structure crystallography and anisotropy of properties]. Izvestiya vysshikh uchebnykh zavedenii. Tsvetnaya metallurgiya = Universities' Proceedings Non-Ferrous Metallurgy, 2015, no. 6, pp. 36–42. DOI: 10.17073/0021-3438-2015-6-36-42.
14. Kishkina S.I. Soprotivlenie razrusheniyu alyuminievykh splavov [Fracture resistance of aluminum alloys]. Moscow, Metallurgiya Publ., 1981. 280 p.
15. Troyanov V.A., Uksusnikov A.N., Senatorova O.G., Pushin V.G. [About the possibility of obtaining thermostable high-strength alloys of the Al-Zn-Mg-Cu system with nano-phase separation 1 121]. Vtorye Moskovskie chteniya po problemam prochnosti materialov, posvyashchennye 80-letiyu so dnya rozhdeniya akademika RAN Yu.A. Osip'yana: tezisy dokladov [Proceedings Second Moscow Readings on the Problems of Strength of Materials, dedicated to the 80th anniversary of the birth of Academician Yu.A. Osipyan. Abstracts]. Moscow, Chernogolovka, 2011, p. 152. (In Russian).
16. Shanyavskii A.A. Modelirovanie ustalostnykh razrushenii metallov: sinergetika v aviatsii [Modeling of fatigue cracking of metals. Synergetics for aviation]. Ufa, Monografiya Publ., 2007. 500 p.
17. Brown M.W., De los Rios E., Miller K.J. Environmentally assisted cracking. Proceedings ECF 12: Fracture from Defects, Cradley Heath, 1998, vol. 3, pp. 1091–1248.
18. Wu X.R., Wang Z.G., eds. Corrosion fatigue. Fatigue ’99: Proceedings 7th International Fatigue Congress, Beijing, China, 1999, vol. 4, pp. 2197–2365.
19. Korobeinikov S., Oleinikov A., Gorev B., Bormotin K. Matematicheskoe modelirovanie protsessov polzuchesti metallicheskikh izdelii iz materialov, imeyushchikh raznye svoistva pri rastyazhenii i szhatii [Mathematical simulation of creep processes in metal patterns made of materials with different extension compression properties]. Vychislitel'nye metody i programmirovanie = Numerical Methods and Programming, 2008, vol. 9, no. 1, pp. 346–365.
20. Bormotin K.S., Vin A. Metod dinamicheskogo programmirovaniya v zadachakh optimal'nogo deformirovaniya paneli v rezhime polzuchesti [A method of dynamic programming in the problems of optimal panel deformation in the creep mode]. Vychislitel'nye metody i programmirovanie = Numerical Methods and Programming, 2018, vol. 19, no. 4, pp. 470–478. DOI: 10.26089/NumMet.v19r442.
21. Liu Ch., Yang J., Ma P., Ma Z., Zhan L., Chen K., Huang M., Li J., Li Zh. Large creep formability and strength–ductility synergy enabled by engineering dislocations in aluminum alloys. International Journal of Plasticity, 2020, p. 102774.
22. Lin Y.C., Jiang Y.-Q., Chen X.-M., Wen D.-X., Zhou H.-M. Effect of creep-aging on precipitates of 7075 aluminum alloy. Materials Science and Engineering: A, 2013, vol. 588, pp. 347–356. DOI: 10.1016/j.msea.2013.09.045.
23. Lin Y.C., Peng X.-B., Jiang Y.-Q., Shuai C.-J. Effects of creep-aging parameters on aging precipitates of a two-stage creep-aged Al–Zn–Mg–Cu alloy under the extra compressive stress. Journal of Alloys and Compounds, 2018, vol. 743, pp. 448–455. DOI: 10.1016/j.jallcom.2018.01.238.
24. Bormotin K.S., Belykh S.V., Vin A. Matematicheskoe modelirovanie obratnykh zadach mnogotochechnogo formoobrazovaniya v rezhime polzuchesti s pomoshch'yu rekonfiguriruemogo ustroistva [Mathematical modeling of inverse multipoint forming problems in the creep mode using a reconfigurable tool]. Vychislitel'nye metody i programmirovanie = Numerical Methods and Programming, 2016, vol. 17, no. 3, pp. 258–267. DOI: 10.26089/NumMet.v17r324.
Funding:
The reported study was funded by RFBR and Novosibirsk region according to the research project № 19-48-543028.
Acknowledgements:
The authors express their gratitude to the leading process engineer of the branch of PJSC “Company “Sukhoi” “VP Chkalov Novosibirsk Aircraft Plant”, Ph.D. (Engineering) Galina Raevskaya for consultations in the work.
Zakharchenko K.V., Kapustin V.I., Larichkin A.Yu., Lukyanov Ya.L. Influence of technology of hot forming of plates from aluminum alloys Al-Cu-Li-Zn and Al-Zn-Mg-Cu on resistance to fatigue fracture. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2020, vol. 22, no. 4, pp. 94–109. DOI: 10.17212/1994-6309-2020-22.4-94-109. (In Russian).