Obrabotka metallov

OBRABOTKA METALLOV

METAL WORKING AND MATERIAL SCIENCE
Print ISSN: 1994-6309    Online ISSN: 2541-819X
English | Русский

Recent issue
Vol. 27, No 3 July – September 2025

Experimental studies of strain resistance of aluminum alloy АД0 in the undersolidus temperature range

Issue No 2 (63) April - June 2014
Authors:

Konovalov A.V.,
Smirnov A.S.,
Chernomas V.V.,
Subachev Y.V.,
Sevastyanov G.M.
Abstract
The strain resistance of the aluminum alloy АД0 during deformation in near solidus temperatures ranging between 540 and 640 °С and strain rates ranging between 0.06 and 1.2 s–1 are studied in the article. It is found that the strain resistance increases with the growth of strain. It can be due to the passing dynamic recovery that inhibits the start of the dynamic recrystallization. At the temperature ranging from 560 to 640 °С, the АД0 alloy has an abnormal behavior of the strain resistance curve. It is expressed in an inverse strain-rate dependence of strain resistance. This behavior may result in the barrier effect of blocking free dislocations by dopant atoms in the strain-rate range from 0.06 to 0.1 s–1.
Keywords: aluminium, strain resistance, viscoplastic properties, solidus temperature

References
1. Spencer D.B., Mehrabian R., Flemings M.C. Rheological behavior of Sn-15 pct Pb in the crystallization range. Metallurgical Transactions, 1972, Vol. 3, no.7, pp. 1925-1932.

2. Fan Z. Semisolid metal processing. International Materials Reviews, 2002, Vol. 47, no.2, pp. 49-85.

3. Atkinson H. Modelling the semisolid processing of metallic alloys. Progress in Materials Science, 2005, Vol. 50, no. 3, pp. 341-412.

4. Jiang J.-f., Luo S.-j. Preparation of semi-solid billet of magnesium alloy and its thixoforming. Transactions of Nonferrous Metals Society of China, 2007, Vol. 17, no. 1, pp. 46-50.

5. Kirdeev Yu.P., Belousov I.Ya., Rakogon A.I. Izgotovlenie detalei s vysokimi tonkimi stenkami shtampovkoi kristallizuiushchegosia aliuminiia [Manufacture of parts with high thin-walled extruded aluminum crystallizing]. Kuznechno-Shtampovochnoe Proizvodstvo (Obrabotka Metallov Davleniem) - Press-forging production. Metal Forming, 2002, no. 3, pp. 9-11.

6. Semenov B.I., Bocharov Yu.A., Kushtarov K.M., Gladkov Yu.A. Sovremennye tekhnologii formoobrazovaniia v tverdozhidkom sostoianii [Modern technology in shaping solid-liquid state]. Kuznechno-Shtampovochnoe Proizvodstvo (Obrabotka Metallov Davleniem) - Press-forging production. Metal Forming, 2006, no. 10, pp. 33-43.

7. Chiarmetta G., Giordano P. STAMPAL: A family of cutting-edge technologies. Comparison of applications in automotive engineering. STAMPAL: Une famille de technologies a l'avantgarde. Comparison des applications dans la domaine de l'automobile. 2002, no. 217, 21 p.

8. Chernomas V.V., Lovizin N.S., Sosnin A.A. Kriterii ustoichivosti tekhnologicheskogo protsessa polucheniia metalloizdelii na ustanovke gorizontal'nogo lit'ia i deformatsii metalla [Stability criteria for manufacturing metal products on a horizontal metal casting and deformation plant]. Problemy Mashinostroeniya i Nadezhnosti Mashin - Journal of Machinery Manufacture and Reliability, 2012, Vol. 2, pp. 71-77.

9. Chernomas V.V., Salikov S.R., Konovalov A.V. Optimizatsiia tekhnologicheskikh parametrov protsessa polucheniia polosy sovmeshchennym metodom lit'ia i deformatsii metalla [Optimization of technological parameters of the process of obtaining a combined method of strip casting and deformation]. Obrabotka metallov (tekhnologiia, oborudovanie, instrumenty) - Metal Working and Material Science, 2012, Vol. 2, pp. 7-13.

10. Konovalov A.V., Smirnov A.S. Eksperimental'naia baza i metodika identifikatsii opredeliaiushchikh sootnoshenii uprugoviazkoplasticheskoi sredy [Experimental base and technique of constitutive equation identification of elasticviscoplastic medium]. Fiziko-khimicheskaia kinetika v gazovoi dinamike, 2010, no. 1, pp. 198-201. (In Russ.) Available at: http://chemphys.edu.ru/media/files/010-01-12-028.pdf . (accessed 24.04.2014)

11. Konovalov A.V., Smirnov A.S. Viazkoplasticheskaia model' soprotivleniia deformatsii stali 08Kh18N10T pri temperature goriachei deformatsii [Viscoplastic model for the strain resistance of 08Kh18N10T steel at a hot-deformation temperature]. Metally - Russian Metallurgy (Metally). 2008, no. 2, pp. 55-59.

12. Polukhin P.I., Gun G.Ya., Galkin A.M. Soprotivlenie plasticheskoi deformatsii metallov i splavov. 2-e izd. Spravochnik [Resistance to plastic deformation of metals and alloys. 2nd ed. Handbook]. Moscow, Metallurgiia Publ., 1983. 352 p.

13. Mostafaei M. A., Kazeminezhad M. Hot deformation behavior of hot extruded Al–6Mg alloy. Materials Science and Engineering: A, 2012, Vol. 535, pp. 216-221.

14. Gorelik S.S., Dobatkin S.V., Kaputkina L.M. Rekristallizatsiia metallov i splavov. 3-e izd [Recrystallization of metals and alloys. 3rd ed.]. Moscow, MISIS, 2005. 432 p.

15. Rokni M. R., Zarei-Hanzaki A., Roostaei A. A., Abedi H. R. An investigation into the hot deformation characteristics of 7075 aluminum alloy. Materials & Design, 2011, Vol. 32, no.4, pp. 2339-2344.

16. Mostafaei M. A., Kazeminezhad M. Analyses on the flow stress of an Al-Mg alloy during dynamic recovery. Journal of Materials Engineering and Performance, 2013, Vol. 22, no. 3, pp. 700-705.

17. Zhongjun W., Weiping J., Jianzhong C. Study on the Deformation Behavior of Mg-3.6% Er Magnesium Alloy. Journal of Rare Earths, 2007, Vol. 25, no. 6, pp. 744-748.

18. Wang C., Xu Y., Han E. Serrated flow and abnormal strain rate sensitivity of a magnesium–lithium alloy. Materials Letters, 2006, Vol. 60, no. 24, pp. 2941-2944.

19. Zhu S. M., Nie J. F. Serrated flow and tensile properties of a Mg-Y-Nd alloy. Scripta Materialia, 2004, Vol. 50, no. 1, pp. 51-55.
Views: 3088