Introduction. The development of hydrogen energy implies a decrease in the dependence of various human activities on fossil energy sources and a significant reduction in carbon dioxide emission into the atmosphere. Therefore, the requirements for the quality of structural materials, which have the prospect of being used for storage and transportation of hydrogen, as well as for the creation of infrastructure facilities for hydrogen energy, are increasing. Therefore, the scientific researches on the hydrogen-assisted microstructure and mechanical behavior of structural materials in various loading schemes are of great importance. The aim of this work is to establish the effect of chemical-deformation treatment, including rolling combined with hydrogen saturation, on the microstructure, phase composition, and mechanical properties of 316L-type austenitic stainless steel. Methods. Transmission electron microscopy and backscattered electron diffraction, X-ray diffraction, X-ray phase and magnetic phase analysis, microindentation and uniaxial static tension are utilized. Results and Discussion. It is shown experimentally that after rolling with 25 and 50 % upset, the morphology of the defect structure and the phase composition of 316L steel substantially depends on the deformation temperature (at room temperature or with the cooling of the samples in the liquid nitrogen) and on hydrogen saturation rate (for 5 hours at a current density of 200 mA/cm2). The main deformation mechanisms of the steel in rolling are slip, twinning, and microlocalization of plastic flow, which all provide the formation of ultrafine grain-subgrain structure in the samples. In addition, deformation-induced ε and α' martensitic phases are formed in the structure of the rolled samples. Regardless of the regime of chemical-deformation processing, grain-subgrain structures with a high density of deformation defects are formed in steel, but its morphologies are dependent on the processing regime. The experimental data indicate that both preliminary hydrogen saturation and a decrease in the deformation temperature contribute to the more active development of mechanical twinning and deformation-induced phase transformations during rolling. Despite the discovered effects on the influence of hydrogen saturation on the deformation mechanisms and the morphology of a defective microstructure formed during rolling, preliminary hydrogenation has little effect on the mechanical properties of steel at a fixed degree and temperature of deformation.These data indicate that irrespective of the morphology of the defective grain-subgrain structure, grain refinement, accumulation of deformation defects and an increase in internal stresses lead to an increase in the strength characteristics of the steel.
1. Takeichi N., Senoh H., Yokota T., Tsuruta H., Hamada K., Takeshita H.T., Tanaka H., Kiyobayashi T., Takano T., Kuriyama N. "Hybrid hydrogen storage vessel", a novel high pressure hydrogen storage vessel combined with hydrogen storage material. International Journal of Hydrogen Energy, 2003, vol. 28, iss. 10, pp. 1121–1129. DOI: 10.1016/S0360-3199(02)00216-1.
2. Duschek D., Wellnitz J. High pressure hydrogen storage system based on new hybrid concept. Sustainable Automotive Technologies. Cham, 2013, pp. 27–33. DOI: 10.1007/978-3-319-01884-3_3.
3. Macadre A., Artamonova M., Matsuoka S., Furtado J. Effects of hydrogen pressure and test frequency on fatigue crack growth properties of Ni-Cr-Mo steel candidate for a storage cylinder of a 70 MPa hydrogen filling station. Engineering Fracture Mechanics, 2011, vol. 78, iss. 18, pp. 3196–3211. DOI: 10.1016/j.engfracmech.2011.09.007.
4. Michler T., Marchi C.S., Naumann J., Weber S., Martin M. Hydrogen environment embrittlement of stable austenitic steels. International Journal of Hydrogen Energy, 2012, vol. 37, pp. 16231–16246. DOI: 10.1016/j.ijhydene.2012.08.071.
5. Perng T.P., Altstetter C.J. Comparison of hydrogen gas embrittlement of austenitic and ferritic stainless steels. Metallurgical Transactions A, 1987, vol. 18, pp. 123–134. DOI: 10.1007/BF02646229.
6. Shakhova I., Dudko V., Belyakov A., Tsuzaki K., Kaibyshev R. Effect of large strain cold rolling and subse-quent annealing on microstructure and mechanical properties of an austenitic stainless steel. Materials Science and Engineering: A, 2012, vol. 545, pp. 176–186. DOI: 10.1016/j.msea.2012.02.101.
7. Wasnik D.N., Gopalakrishnan I.K., Yakhmi J.V., Kain V., Samajdar I. Cold rolled texture and microstructure in types 304 and 316L austenitic stainless steels. ISIJ International, 2003, vol. 43, no. 10, pp. 1581–1589. DOI: 10.2355/isijinternational.43.1581.
8. Padilha A.F., Plaut R.L., Rios P.R. Annealing of cold-worked austenitic stainless steels. ISIJ International, 2003, vol. 43, no. 2, pp. 135–143. DOI: 10.2355/isijinternational.43.135.
9. Ghosh S.K., Mallick P., Chattopadhyay P.P. Effect of cold deformation on phase evolution and mechanical properties in an austenitic stainless steel for structural and safety applications. Journal of Iron and Steel Research International, 2012, vol. 19, no. 4, pp. 63–68. DOI: 10.1016/s1006–706x(12)60089-2.
10. Ren-bo S., Jian-ying X., Dong-po H. Characteristics of mechanical properties and microstructure for 316l austenitic stainless steel. Journal of Iron and Steel Research International, 2011, vol. 18, no. 11, pp. 53–59. DOI: 10.1016/S1006-706X(11)60117-9.
11. Litovchenko I.Yu., Shevchenko N.V., Tyumentsev A.N., Naiden E.P. Fazovyi sostav i defektnaya substruktura austenitnoi stali 02X17T14M2 posle deformatsii prokatkoi pri komnatnoi temperature [Phase composition and defective substructure of austenitic steel 02Cr17Ni14Mo2 after room temperature rolling]. Fizicheskaya mezomekhanika = Physical mesomechanics, 2006, vol. 9, spec. iss. 1, pp. 137–140. DOI: 10.24411/1683-805X-2006-00050.
12. Litovchenko I.Yu., Tyumentsev A.N., Naiden E.P. Osobennosti martensitnykh prevrashchenii i evolyutsiya defektnoi mikrostruktury v protsesse prokatki metastabil'noi austenitnoi stali pri komnatnoi temperature [Peculiarities of martensite transformations and evolution of defect microstructure in metastable austenitic steel rolled at room temperature]. Fizicheskaya mezomekhanika = Physical mesomechanics, 2014, vol. 17, no. 1, pp. 31–42. DOI: 10.24411/1683-805X-2014-00045.
13. Hadji M., Badji R. Microstructure and mechanical properties of austenitic stainless steels after cold rolling. Journal of Materials Engineering and Performance, 2002, vol. 11, pp. 145–151. DOI: 10.1361/105994902770344204.
14. Eliezer D., Chakrapani D.G., Altstetter C.J., Pugh E.N. The influence of austenite stability on the hydrogen embrittlement and stress-corrosion cracking of stainless steel. Metallurgical Transactions A, 1979, vol. 10, pp. 935–941. DOI: 10.1007/BF02658313.
15. Singh S., Altstetter C. Effects of hydrogen concentration on slow crack growth in stainless steels. Metallurgical Transactions A, 1982, vol. 13, pp. 1799–1808. DOI: 10.1007/BF02647836.
16. Rozenak P., Bergman R. X-ray phase analysis of martensitic transformations in austenitic stainless steels electrochemically charged with hydrogen. Materials Science and Engineering A, 2006, vol. 437, pp. 366–378. DOI: 10.1016/j.msea.2006.07.140.
17. Yang Q., Luo J.L. Martensite transformation and surface cracking of hydrogen charged and outgassed type 304 stainless steel. Materials Science and Engineering: A, 2000, vol. 288, iss. 1, pp. 75–83. DOI: 10.1016/S0921-5093(00)00833-9.
18. Hoelzel M., Danilkin S.A., Ehrenberg H., Toebbens D.M., Udovic T.J., Fuessa H., Wipf H. Effects of high-pressure hydrogen charging on the structure of austenitic stainless steels. Materials Science and Engineering: A, 2004, vol. 384, iss. 1–2, pp. 255–261. DOI: 10.1016/j.msea.2004.06.017.
19. Schramm R., Reed R. Stacking fault energies of seven commercial austenitic stainless steels. Metallurgical Transactions A, 1975, vol. 6, pp. 1345–1351. DOI: 10.1007/bf02641927.
20. Rhodes C., Thompson A. The composition dependence of stacking fault energy in austenitic stainless steels. Metallurgical Transactions A, 1977, vol. 8, pp. 1901–1906. DOI: 10.1007/BF02646563.
21. Piatti G., Schiller P. Thermal and mechanical properties of the Cr-Mn-(Ni-free) austenitic steels for fusion reactor applications. Journal of Nuclear Materials, 1986, vol. 141–143, pp. 417–426. DOI: 10.1016/S0022-3115(86)80076-9.
22. Qi-Xun D., Xiao-Nong W., Cheng A.-D., Xin-Min L., Xin-Min L. Stacking fault energy of cryogenic austenitic steels. Chinese Physics, 2002, vol. 11, no. 6, pp. 596–600. DOI: 10.1088/1009-1963/11/6/315.
23. Koyama M., Akiyama E., Sawaguchi T., Ogawa K., Kireeva I.V., Chumlyakov Yu.I., Tsuzaki K. Hydrogen-assisted quasi-cleavage fracture in a single crystalline type 316 austenitic stainless steel. Corrosion Science, 2013, vol. 75, pp. 345–353. DOI: 10.1016/j.corsci.2013.06.018.
24. Melnikov E., Maier G., Moskvina V., Astafurova E. Structure, phase composition and mechanical properties of austenitic steel Fe–18Cr–9Ni–0.5Ti–0.08C subjected to chemical deformation processing. AIP Conference Proceedings, 2016, vol. 1783, pp. 020151-1 – 020151-4. DOI: 10.1063/1.4966444.
25. Melnikov E., Maier G., Moskvina V., Astafurova E. Influence of hydrogenation regime on structure, phase composition and mechanical properties of Fe18Cr9Ni0.5Ti0.08C steel in cold rolling. AIP Conference Proceedings, 2017, vol. 1909, pp. 020136-1 – 020136-4. DOI: 10.1063/1.5013817.
26. Kreslin V.Y., Naiden E.P. Automatic complex for a study of the characteristics of hard magnetic materials. Instruments and Experimental Techniques, 2002, vol. 45, pp. 55–57. DOI: 10.1023/A:1014548225622. Translated from Pribory i tekhnika eksperimenta, 2002, no. 1, pp. 83–86.
27. Utevskii L.M. Difraktsionnaya elektronnaya mikroskopiya v metallovedenii [Diffraction electron microscopy in metal science]. Moscow, Metallurgiya Publ., 1973. 584 p.
28. Christian J.W., Mahajan S. Deformation twinning. Progress in Materials Science, 1995, vol. 39, no. 1–2, pp. 1–157. DOI: 10.1016/0079-6425(94)00007-7.
29. Sathiyamoorthi P., Asghari-Rad P., Karthik G.M., Zargaran A., Kim H.S. Unusual strain-induced martensite and absence of conventional grain refinement in twinning induced plasticity high-entropy alloy processed by high-pressure torsion. Materials Science and Engineering: A, 2021, vol. 803, p. 140570. DOI: 10.1016/j.msea.2020.140570.
30. Astafurova E.G., Tukeeva M.S., Maier G.G., Melnikov E.V., Maier H.J. Microstructure and mechanical response of single-crystalline high-manganese austenitic steels under high-pressure torsion: The effect of stacking-fault energy. Materials Science and Engineering:A, 2014, vol. 604, pp. 166–175. DOI: 10.1016/j.msea.2014.03.029.
31. Kireeva I.V., Chumlyakov Yu.I., Luzginova N.V. Skol'zhenie i dvoinikovanie v monokristallakh austenitnykh nerzhaveyushchikh stalei s azotom [Slip and twinning in single crystals of austenitic stainless steels with nitrogen]. Fizika metallov i metallovedenie = The Physics of Metals and Metallography, 2002, vol. 94, no. 5, pp. 92–104. (In Russian).
32. Litvinova E.I., Kireeva I.V., Zakharova E.G., Luzginova N.V., Chumlyakov Yu.I., Sekhitoglu Kh., Karaman I. Dvoinikovanie v monokristallakh stali Gadfil'da [Twinning of Hadfield steel single crystals]. Fizicheskaya mezomekhanika = Physical mesomechanics, 1999, vol. 7 (1–2), pp. 115–121.
33. Shul'mina A.A., Luzginova N.V., Kireeva I.V., Chumlyakov Yu.I., Ul'yanycheva V.F. Mekhanizmy deformatsii monokristallov austenitnykh nerzhaveyushchikh stalei, legirovannykh azotom [Deformation mechanisms of austenitic stainless steel single crystals alloyed with nitrogen]. Fizicheskaya mezomekhanika = Physical mesomechanics, 2004, vol. 7, spec. iss., pt. 1, pp. 253–265.
34. Astafurova E.G., Zakharova G.G., Maier H.J. Hydrogen-induced twinning in ‹001› Hadfield steel single crystals. Scripta Materialia, 2010, vol. 63, iss. 12, pp. 1189–1192. DOI: 10.1016/j.scriptamat.2010.08.029.
35. Astafurova E.G., Maier G.G., Melnikov E.V., Moskvina V., Vojtsik V., Zakharov G., Smirnov A., Bataev V. Effect of hydrogen charging on mechanical twinning, strain hardening, and fracture of ‹111› and ‹144› hadfield steel single crystals. Physical Mesomechanics, 2018, vol. 21, pp. 263–273. DOI: 10.1134/S1029959918030116.
36. Kozlov E.V., Glezer A.M., Koneva N.A., Popova N.A., Kurzina I.A. Osnovy plasticheskoi deformatsii nanostrukturnykh materialov [Fundamentals of plastic deformation of nanostructured materials]. Moscow, Fizmatlit Publ., 2016. 304 p. ISBN 978-5-9221-1689-3.
Funding
The work was carried out within the framework of the state assignment of the IPPM SB RAS, topic number FWRW-2019-0030.
Acknowledgements
The studies were carried out on the equipment of IPPM SB RAS (Center for Collective Use “Nanotech”) and NRU “BelGU” (Center for Collective Use “Diagnostics of the structure and properties of nano-materials”).
Melnikov E.V., Maier G.G., Moskvina V.A., Astafurova E.G. Inluence of hydrogen saturation on the structure and mechanical properties of Fe-17Cr-13Ni-3Mo-0.01С austenitic steel during rolling at different temperatures. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2021, vol. 23, no. 2, pp. 81–97. DOI: 10.17212/1994-6309-2021-23.2-81-97. (In Russian).