Обработка металлов

ОБРАБОТКА МЕТАЛЛОВ

ТЕХНОЛОГИЯ • ОБОРУДОВАНИЕ • ИНСТРУМЕНТЫ
Print ISSN: 1994-6309    Online ISSN: 2541-819X
English | Русский

Последний выпуск
Том 26, № 1 Январь - Март 2024

Водород и его влияние на измельчение порошка никелида титана

Том 23, № 3 Июль - Сентябрь 2021
Авторы:

Абдульменова Екатерина Владимировна,
Кульков Сергей Николаевич
DOI: http://dx.doi.org/10.17212/1994-6309-2021-23.3-100-111
Аннотация

Введение. Промышленный никель-титановый сплав ПН55Т45 состава, близкого к эквиатомному, широко используется для изготовления изделий методом порошковой металлургии. Для достижения высоких физико-механических свойств сплава, полученного таким методом, необходимо использовать мелкодисперсные порошки, которые можно получить, реализуя высокоинтенсивное измельчение в планетарно-шаровой мельнице. Однако в процессе такой обработки возможно загрязнение, окисление порошка, агрегация частиц и др. Для решения этой проблемы предлагается использовать предварительное гидрирование для последующего измельчения в планетарной шаровой мельнице. Целью работы является изучение влияния водорода на измельчение порошка никелида титана. Материалы и методы исследования. Морфология и средний размер частиц порошков – методом сканирующей электронной микроскопии; фазовый состав и параметры тонкой кристаллической структуры порошков исследовались методами рентгеноструктурного и рентгенофазового анализа. Для оценки плотности дислокаций использовались данные рентгеноструктурного анализа. Результаты и их обсуждение. Показано, что использование предварительного гидрирования в течение 180 мин. перед механической обработкой позволяет уменьшить средний размер частиц примерно в два раза. После механической обработки порошка параметры кристаллических решеток фаз TiNi (аустенит), Ti2Ni и Ni3Ti в пределах ошибки не изменяются. После механической обработки порошка с предварительным гидрированием значительно изменяется параметр кристаллической решетки только фазы Ti2Ni, в частности, при 180 минут гидрирования параметр решетки возрастает до 1,1457 ± 5•10–4 нм, что соответствует стехиометрии гидрида Ti2NiH0,5 с параметром решетки 1,1500 нм. Наибольшая плотность дислокаций, оцененная по данным рентгеноструктурного анализа, содержится в фазе Ti2Ni (511), а не в фазах TiNi (аустенит) (110) и Ni3Ti (202). Таким образом, предварительное гидрирование может быть эффективным методом измельчения порошков за счет формирования хрупкого гидрида и подавления процесса агрегации мелких частиц при высокоинтенсивной механической обработке.


Ключевые слова: Порошок Ni-Ti, механическая обработка, гидрирование, водород, область когерентного рассеяния, параметр решетки, фазовый состав

Список литературы

1. Wade N., Adachi Y., Hosoi Z. A role of hydrogen in shape memory effect of Ti-Ni alloys // Scripta Metallurgica et Materialia. – 1990. – Vol. 24 (6). – P. 1051–1055. – DOI: 10.1016/0956-716x(90)90298-u.



2. Hydrogen embrittlement of work-hardened Ni-Ti alloy in fluoride solutions / K. Yokoyama, K. Kaneko, T. Ogawa, K. Moriyama, K. Asaoka, J. Sakai // Biomaterials. – 2005. – Vol. 26. – P. 101–108. – DOI: 10.1016/j.biomaterials.2004.02.009.



3. Закономерности водородного охрупчивания аустенитных нержавеющих сталей с ультрамелкозернистой структурой разной морфологии / Е.Г. Астафурова, Е.В. Мельников, С.В. Астафуров, И.В. Раточка, И.П. Мишин, Г.Г. Майер, В.А. Москвина, Г.Н. Захаров, А.И. Смирнов, В.А. Батаев // Физическая мезомеханика. – 2018. – Т. 21, № 2. – С. 103–117. – DOI: 10.24411/1683-805X-2018-12011.



4. Колачев Б.А. Водородная хрупкость металлов. – М.: Металлургия, 1985. – 216 с.



5. Гадельшин М.Ш., Анисимова Л.И., Бойцова Е.С. Водородное пластифицирование титановых сплавов // Международный научный журнал альтернативная энергетика и экология. – 2004. – Т. 17. – № 9. – С. 26–29.



6. Влияние водорода на структуру закаленного сплава на основе орторомбического алюминида титана и фазовые превращения при последующем нагреве / О.Г. Хаджиева, А.Г. Илларионов, А.А. Попов, С.В. Гриб // Физика металлов и металловедение. – 2013. – Т. 114, № 6. – С. 577–582. – DOI: 10.7868/S0015323013060077.



7. Functional role of polycrystal grain boundaries and interfaces in micromechanics of metal ceramic composites under loading / V.E. Panin, V.E. Egorushkin, D.D. Moiseenko, P.V. Maksimov, S.N. Kulkov, S.V. Panin // Computational Materials Science. – 2016. – Vol. 116. – P. 74–81. – DOI: 10.1016/j.commatsci.2015.10.



8. Otsuka K., Ren X. Physical metallurgy of Ti-Ni-based shape memory alloys // Progress in Materials Science. – 2005. – Vol. 50 (5). – P. 511–678. – DOI: 10.1016/j.pmatsci.2004.10.001.



9. El-Eskandarany M.S. Structure and properties of nanocrystalline TiC full-density bulk alloy consolidated from mechanically reacted powders // Journal of Alloys and Compounds. – 2000. – Vol. 305. – P. 225–238. – DOI: 10.1016/s0925-8388(00)00692-7.



10. Nobuki T., Crivello J-C., Cuevas F. Fast synthesis of TiNi by mechanical alloying and its hydrogenation properties // International Journal of Hydrogen Energy. – 2019. – Vol. 44. – P. 10770–10776. – DOI: 10.1016/j.ijhydene.2019.02.203.



11. Effect of cycling on hydrogen storage properties of Ti2CrV alloy / A. Kumar, K. Shashikala, S. Banerjee, J. Nuwad, P. Das, C.G.S. Pillai // International Journal of Hydrogen Energy. – 2012. – Vol. 37. – P. 3677–3682. – DOI: 10.1016/j.ijhydene.2011.04.135.



12. Destructive hydrogenation as method for improvement of TiNi exploitation properties / T.I. Bratanich, O.I. Get’man, T.V. Permyakova, V.V. Skorokhod // International Journal of Hydrogen Energy. – 2007. – Vol. 32. – P. 3941–3946. – DOI: 10.1016/j.ijhydene.2007.04.033.



13. Hydrogenation properties of nanostructured Ti2Ni-based alloys and nanocomposites / M. Balcerzak, J. Jakubowicz, T. Kachlicki, M. Jurczyk // Journal of Power Sources. – 2015. – Vol. 280. – P. 435–445. – DOI: 10.1016/j.jpowsour.2015.01.135.



14. Diffusion during powder metallurgy synthesis of titanium alloys / O.M. Ivasishin, D. Eylon, V.I. Bondarchuk, D.G. Savvakin // Defect Diffusion Forum. – 2008. – Vol. 277. – P. 177–185. – DOI: 10.4028/www.scientific.net/ddf.277.177.



15. Role of surface contamination in titanium PM / O.M. Ivasishin, D.G. Savvakin, M.M. Gumenyak, O.B. Bondarchuk // Key Engineering Materials. – 2012. – Vol. 520. – P. 121–132. – DOI: 10.4028/www.scientific.net/kem.520.121.



16. Ivasishin O.M., Moxson V.S. Low-cost titanium hydride powder metallurgy // Titanium Powder Metallurgy. – Amsterdam; Boston: Elsevier, 2015. – P. 117–148. – DOI: 10.1016/b978-0-12-800054-0.00008-3.



17. Sun P., Fang Z.Z., Koopman M. A comparison of hydrogen sintering and phase transformation (HSPT) processing with vacuum sintering of CP-Ti // Advanced Engineering Materials. – 2013. – Vol. 15. – P. 1007–1013. – DOI: 10.1002/adem.201300017.



18. Paramore J.D., Fang Z.Z., Sun P. Hydrogen sintering of titanium and its alloys // Titanium Powder Metallurgy. – Amsterdam; Boston: Elsevier, 2015. – P. 163–182. – DOI: 10.1016/b978-0-12-800054-0.00010-1.



19. Баймаков Ю.В., Журин А.И. Электролиз в гидрометаллургии. – М.: Металлургиздат, 1962. – 617 с.



20. Abdulmenova E.V., Kulkov S.N. Mechanical high-energy treatment of TiNi powder and phase changes after electrochemical hydrogenation // International Journal of Hydrogen Energy. – 2021. – Vol. 46. – P. 823–836. – DOI: 10.1016/j.ijhydene.2020.09.171.



21. Дресвянников А.Ф., Колпаков М.Е. Контроль и управление качеством материалов. – Казань: КГТУ, 2007. – 389 с. – ISBN 978-5-7882-0255-0.



22. Aбдульменова E.В., Кульков С.Н. Закономерности изменения структуры после механической активации порошкового TiNi и его взаимодействие с водородом // Известия высших учебных заведений. Физика. – 2019. – Т. 62, № 8. – C. 137–142. – DOI: 10.17223/00213411/62/8/137.



23. Tabular processor for X-ray diffractometry. – URL: http://slavic.me/rtp/index.htm (accessed: 12.08.2021).



24. Scherrer P. Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen // Kolloidchemie Ein Lehrbuch. – Berlin; Heidelberg: Springer, 1912. – P. 387–409. – DOI: 10.1007/978-3-662-33915-2_7.



25. Stuewe H-P., Shimomura Y. Lattice constants of the body-centered-cubic phases FeTi, CoTi, and NiTi // Zeitschrift fur Metallkunde. – 1960. – Vol. 51. – P. 180–181.



26. Muller M.H., Knott H.W. Powder metallurgy and metal ceramics // Transactions of the Metallurgical Society of AIME 227. – 1963. – Vol. 674. – P. 674–677.



27. Laves F., Wallbaum H.J. Die Kristallstruktur von Ni3Ti und Si2Ti // Zeitschriftfür Kristallographie – Crystalline Materials. – 1939. – Vol. 101. – P. 78–93. – DOI: 10.1524/zkri.1939.101.1.78.



28. Michal G.M., Sinclair R. The structure of TiNi martensite // Acta Crystallographica. Section B: Structural Science. – 1981. – Vol. 37. – P. 1803–1807. – DOI: 10.1107/S0567740881007292.



29. Wasserstoff in intermetallischen phasen am beispiel des systems titan-nickel-wasserstoff / H. Buchner, M. Gutjahr, K. Beccu, H. Saufferer // Zeitschrift Fur Metallkunde. – 1972. – Vol. 63. – P. 497–500.



30. Mechanism of early capacity loss of Ti2Ni hydrogen-storage alloy electrode / B. Luan, N. Cui, H. Zhao, H.K. Liu, S.X. Dou // Journal of Power Sources. – 1995. – Vol. 55. – P. 101–106. – DOI: 10.1016/0378-7753(94)02162-v.



31. Williamson G.K., Smallman R.E. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum // Philosophical Magazine. – 1956. – Vol. 1 (1). – P. 34–46. – DOI: 10.1080/14786435608238074.



32. Взаимодействие водорода с металлами / В.Н. Агеев, И.Н. Бекман, О.П. Бурмистрова и др.; отв. ред. А.П. Захаров. – М.: Наука, 1987. – 296 с.



33. Tomita M., Yokoyama K., Sakai J. Effects of potential, temperature and pH on hydrogen absorption and thermal desorption behaviors of Ni-Ti superelastic alloy in 0.9 % NaCl solution // Corrosion Science. – 2008. – Vol. 50. – P. 2061–2069. – DOI: 10.1016/j.corsci.2008.04.022.



34. Defect studies of H implanted niobium / I. Prochazka, J. Cízek, V. Havranek, W. Anwand // Journal of Alloys and Compounds. – 2015. – Vol. 645. – P. S69–S71. – DOI: 10.1016/j.jallcom.2015.01.197.

Благодарности. Финансирование

Финансирование:

Результаты получены при выполнении комплексного проекта «Создание высокотехнологичного импортозамещающего производства полного цикла металлорежущих сложнопрофильных многогранных твердосплавных пластин для приоритетных отраслей промышленности» (соглашение о предоставлении субсидии от 27.11.2019 № 075-11-2019-036), реализуемого ИФПМ СО РАН при финансовой поддержке Минобрнауки России в рамках постановления Правительства РФ от 09.04.2010 № 218.

 

Благодарности:

Исследования выполнены на оборудовании ЦКП «Структура, механические и физические свойства материалов».

Для цитирования:

Абдульменова Е.В., Кульков С.Н. Водород и его влияние на измельчение порошка никелида титана // Обработка металлов (технология, оборудование, инструменты). – 2021. – Т. 23, № 3. – С. 100–111. – DOI: 10.17212/1994­6309­2021­23.3­100­111.

For citation:

Abdulmenova E.V., Kulkov S.N. Hydrogen and its effect on the grinding of Ti­Ni powder. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2021, vol. 23, no. 3, pp. 100–111. DOI: 10.17212/1994­6309­2021­23.3­ 100­111. (In Russian).

Просмотров: 693