Obrabotka metallov

OBRABOTKA METALLOV

METAL WORKING AND MATERIAL SCIENCE
Print ISSN: 1994-6309    Online ISSN: 2541-819X
English | Русский

Recent issue
Vol. 27, No 2 April - June 2025

Low energy mechanical treatment of non-stoichiometric titanium carbide powder

Vol. 23, No 3 July – September 2021
Authors:

Sablina Tatyana,
Sevostyanova Irina
DOI: http://dx.doi.org/10.17212/1994-6309-2021-23.3-112-123
Abstract

Introduction. The practical significance of non-stoichiometric titanium carbides TiCх in various fields of technology and in medicine is expanding. In this regard, it is important to investigate both methods of obtaining titanium carbide powder and its properties in a wide range of stoichiometry. One of the effective ways to influence the physical and mechanical properties of powder systems is its mechanical treatment. Under shock-shear action, which is realized during processing in a ball mill, mechanical energy is transferred to the powder system, as a result of which it is ground, centers with increased activity on newly formed surfaces are formed; phase transformations, crystal lattice deformation, amorphization, formation of defects, etc. are possible. The aim of this work is to study the effect of low-energy mechanical treatment in a ball mill on the structure, phase composition and parameters of the fine crystal structure of non-stoichiometric titanium carbide powder obtained by reduction of titanium oxide with carbon and calcium. Materials and methods. Powder of titanium carbide TiC, obtained by calcium carbonization of titanium oxide was investigated. The powder was treated in a drum type ball mill. The structure of the powders before and after treatment was studied using the Philips SEM 515 scanning electron microscope. The specific surface area was determined by the BET method. The phase composition and parameters of the fine crystal structure of powder materials were investigated by X-ray analyzes. Results and discussion. It was established that an increase of the time of mechanical treatment in a ball mill of a non-stoichiometric titanium carbide powder TiC0.7 leads to an increase in the specific surface area of the powder from 0.6 to 3.4 m2 / g, and the average particle size calculated from it decreases from 2 μm to 360 nm. It is shown that in the process of treatment of the non-stoichiometric titanium carbide TiC0.7 powder, its structural phase state changes. Powder particles consist of two structural components with different atomic ratio of carbon to titanium: TiC0.65 and TiC0.48. Mechanical treatment of titanium carbide powder leads to a decrease in the microstresses of the TiCx crystal lattice and the size of coherently diffracting domains (CDD) from 55 to 30 nm for the TiC0.48 phase. For the TiC0.65 phase, with an increase in the duration of mechanical treatment, as well as for TiC0.48, the size of CDD decreases, and the level of microdistortions of the crystal lattice increases. This indicates that in the process of mechanical treatment, not only the grinding of powder particles occurs, but also an increase in its defects.


Keywords: Titanium carbide, non-stoichiometry, phase composition, crystal lattice, mechanical treatment

References

1. Ortner H.M., Ettmayer P., Kolaska H. The history of the technological progress of hardmetals, Internationa. Journal of Refractory Metals and Hard Materials, 2014, vol. 44, pp. 148–159. DOI: 10.1016/j.ijrmhm.2013.07.014.



2. Li Y.-L., Takamasa I. Incongruent vaporization of titanium carbide in thermal plasma. Materials Science and Engineering: A, 2003, vol. 345, iss. 1–2, pp. 301–308. DOI: 10.1016/S0921-5093(02)00506-3.



3. Lee D.W., Alexandrovskii S.V., Kim B.K. Novel synthesis of substoichiometric ultrafine titanium carbide. Materials Letters, 2004, vol. 58, iss. 9, pp. 1471–1474. DOI: 10.1016/j.matlet.2003.10.011.



4. Yasuo G., Kensaku F., Mikio K., Yutaka O., Masanobu N., Kensuke A., Deki S. Synthesis of titanium carbide from a composite of TiO2, nanoparticles methyl cellulose by carbothermal reduction. Materials Research Bulletin, 2001, vol. 36, iss. 13–14, pp. 2263–2275. DOI: 10.1016/S0025-5408(01)00713-9.



5. Huber P., Manova D., Mandl S., Rauschenbach B. Formation of TiN, TiC and TiCN by metal plasma immersion ion implantation and deposition. Surface and Coatings Technology, 2003, vol. 174–175, pp. 1243–1247. DOI: 10.1016/S0257-8972(03)00458-4.



6. Lengauer W. Transition metal carbides, nitrides, and carbonitrides. Handbook of Ceramic Hard Materials. Ed. by R. Riedel. Weinheim, Wiley-VCH Verlag GmbH, 2000, ch. 7, pp. 238–241. DOI: 10.1002 / 9783527618217.ch7.



7. Jones M.I., McColl I.R., Grant D.M., Parker K.G., Parker T.L. Protein adsorption and platelet attachment and activation, on TiN, TiC, and DLC coatings on titanium for cardiovascular applications. Journal of Biomedical Materials Research, 2000, vol. 52, iss. 2, pp. 413–421. DOI: 10.1002/1097-4636(200011)52:23.0.CO;2-U.



8. Bairikov I.M., Amosov A.P., Tyumina O.V., et al. Eksperimental'naya otsenka biosovmestimosti novogo SVS-materiala na osnove karbida titana so skvoznoi poristost'yu na kul'turakh mezenkhimal'nykh stvolovykh kletok kostnogo mozga cheloveka [Experimental assessment of biocompatibility of a new SHS-material based on titanium carbide with through porosity on cultures of human bone marrow mesenchymal stem cells]. Voprosy chelyustnolitsevoi, plasticheskoi khirurgii, implantologii i klinicheskoi stomatologii = Maxillofacial, plastic surgery, implantology and clinical dentistry issues, 2011, no. 1–2, pp. 23–27.



9. Moriwaki H., Kitajima S., Shirai K., Kiguchi K., Yamada O. Application of the powder of porous titanium carbide ceramics to a reusable adsorbent for environmental pollutants. Journal of Hazardous Materials, 2011, vol. 185, iss. 2–3, pp. 725–731. DOI: 10.1016/j.jhazmat.2010.09.079.



10. Youshin G., Dash R., Jagiello J., Fisher J.E., Gogotsi Y. Carbide-derived carbons: effect of pore size on hydrogen uptake and heat of adsorption. Advanced Functional Materials, 2006, vol. 16, pp. 2288–2293. DOI: 10.1002/adfm.200500830.



11. Magnalia F., Anselmi-Tamburini U., Deidda C., Delogu F., Cocco G., Munir Z.A. Role of mechanical activation in SHS synthesis of TiC. Journal of Materials Science, 2004, vol. 39, pp. 5227–5230. DOI: 10.1023/B:JMSC.0000039215.28545.2f.



12. Cochepina B., Gauthiera V., Vrelb D., Dubois S. Crystal growth of TiC grains during SHS reactions. Journal of Crystal Growth, 2007, vol. 304, pp. 481–486. DOI: 10.1016/j.jcrysgro.2007.02.018.



13. Tong L., Reddy R.G. Synthesis of titanium carbide nano-powders by thermal plasma. Scripta Materialia, 2005, vol. 52, iss. 12, pp. 1253–1258. DOI: 10.1016/j.scriptamat.2005.02.033.



14. Dewan M.A.R., Zhang G., Ostrovski O. Carbothermal reduction of titania in different gas atmospheres. Metallurgical and Materials Transactions: B, 2009, vol. 40, pp. 62–69. DOI: 10.1007/s11663-008-9205-z.



15. Woo Y., Kang H., Kim D.J. Formation of TiC particle during carbothermal reduction of TiO2. Journal of the European Ceramic Society, 2007, vol. 27, iss. 2–3, pp. 719–722. DOI: 10.1016/j.jeurceramsoc.2006.04.090.



16. Grove D.E., Gupta U., Castleman A.W. Effect of carbon concentration on changing the morphology of titanium carbide nanoparticles from cubic to cuboctahedron. ACS Nano, 2010, vol. 4, pp. 49–54. DOI: 10.1021 / nn901041.



17. Preiss H., Berger L.M., Schultze D. Studies on the carbothermal preparation of titanium carbide from different gel precursors. Journal of the European Ceramic Society, 1999, vol. 19, iss. 2, pp. 195–206. DOI: 10.1016/S0955-2219(98)00190-3.



18. Zhang H., Li F., Jia Q., Ye G. Preparation of titanium carbide powders by sol–gel and microwave carbothermal reduction methods at low temperature. Journal of Sol-Gel Science and Technology, 2008, vol. 46, pp. 217–222. DOI: 10.1007/s10971-008-1697-0.



19. Dyjak S., Norek M., Polanski M., Cudzilo S., Bystrzycki J. A simple method of synthesis and surface purification of titanium carbide powder. International Journal of Refractory Metals and Hard Materials, 2013, vol. 38, pp. 87–91. DOI: 10.1016/j.ijrmhm.2013.01.004.



20. Fu Z., Koc R. Pressureless sintering of submicron titanium carbide powders. Ceramics International, 2017, vol. 43, iss. 18, pp. 17233–17237. DOI: 10.1016/j.ceramint.2017.09.050.



21. Tong L., Reddy R.G. Synthesis of titanium carbide nano-powders by thermal plasma. Scripta Materialia, 2005, vol. 52, iss. 12, pp. 1253–1258. DOI: 10.1016/j.scriptamat.2005.02.033.



22. Sen W., Sun H., Yang B., Xu B., Ma W., Liu D., Dai Y. Preparation of titanium carbide powders by carbothermal reduction of titania/charcoal at vacuum condition. International Journal of Refractory Metals and Hard Materials, 2010, vol. 28, iss. 5, pp. 628–632. DOI: 10.1016/j.ijrmhm.2010.06.005.



23. Lipatnikov V.N., Kottar A., Zueva L.V., Gusev A.I. Fazovye prevrashcheniya besporyadok-poryadok i elektrosoprotivlenie nestekhiometricheskogo karbida titana [Disorder-order phase transformations and electrical resistivity of nonstoichiometric titanium carbide]. Fizika tverdogo tela = Physics of the Solid State, 1998, vol. 40, no. 7, pp. 1332–1340. (In Russian).



24. Kiparisov S.S., Levinskii Yu.V., Petrov A.P. Karbid titana: poluchenie, svoistva, primenenie [Titanium carbide: preparation, properties, application]. Moscow, Metallurgiya Publ., 1987. 215 p.



25. Kurlov A.S., Gusev A.I. High-energy milling of nonstoichiometric carbides: effect of nonstoichiometry on particle size of nanopowders. Journal of Alloys and Compounds, 2014, vol. 582, pp. 108–118. DOI: 10.1016/j.jallcom.2013.08.008.



26. Gorbacheva T.B. Rentgenografiya tverdykh splavov [X-ray of hard alloys]. Moscow, Metallurgiya Publ., 1985. 205 p.



27. Buzimov A.Y., Eckl W., Gömze L.A., Kocserha I., KurovicsE., Kulkov A.S., Kulkov S.N. Effect of mechanical treatment on properties of Si-Al-O zeolites. Építoanyag – Journal of Silicate Based and Composite Materials, 2018, vol. 70, iss. 1, pp. 23–26. DOI: 10.14382/epitoanyag-jsbcm.2018.5.



28. Ditenberg I.A., Tyumentsev A.N., Denisov K.I., Korchagin M.A. Peculiarities of the formation of high-defect states in mechanocomposites and powders of niobium and aluminum under severe deformation in planetary ball mills. Physical Mesomechanics, 2013, vol. 16, pp. 84–92. DOI: 10.1134/S1029959913010098.



29. Abdulmenova E.V., Kulkov S.N. Effect of mechanical activation of WC-based powder on the properties of sintered alloys. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2021, vol. 23, no. 1, pp. 68–78. DOI: 10.17212/1994-6309-2021-23.1-68-78.



30. Boldyrev V.V. Mechanochemistry and mechanical activation of solids. Russian chemical reviews, 2006, vol. 75, iss. 3, pp. 177–189. DOI: 10.1070/RC2006v075n03ABEH001205.



31. Urakaev F.K., Boldyrev V.V. Mechanism and kinetics of mechanochemical processes in comminuting devices. Powder Technology, 2000, vol. 107, iss. 1–2, pp. 93–107. DOI: 10.1016/s0032-5910(99)00175-8.



32. Scherrer P. Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. Kolloidchemie Ein Lehrbuch. Berlin, Heidelberg, Springer, 1912, pp. 387–409. DOI: 10.1007/978-3-662-33915-2_7.



33. Stokes A.R., Wilson A.J.C. The diffraction of X-rays by distorted crystal aggregates. Proceedings of the Physical Society, 1944, vol. 56 (3), pp. 174–181. DOI: 10.1088/0959-5309/56/3/303.



34. Saltykov S.A. Stereometricheskaya metallografiya [Stereometric metallography]. Moscow, Metallurgiya Publ., 1970. 376 p.



35. Xiong H., Li Z., Gan X., Chai L., Zhou K. High-energy ball-milling combined with annealing of TiC powders and its influence on the microstructure and mechanical properties of the TiC-based cermets. Materials Science and Engineering: A, 2017, vol. 694, pp. 33–40. DOI: 10.1016/j.msea.2017.03.092.



36. Xiong H., Li Z., Zhou K. TiC whisker reinforced ultra-fine TiC-based cermets: microstructure and mechanical properties. Ceramics International, 2016, vol. 42, iss. 6, pp. 6858–6867. DOI: 10.1016/j.ceramint.2016.01.069.



37. Grigor'ev M.V., Molchunova L.M., Buyakova S.P., Kul'kov S.N Vliyanie mekhanicheskoi obrabotki na strukturu i svoistva poroshka nestekhiometricheskogo karbida titana [Influence of the mechanical processing on the structure and properties of the nonstoichiometric titanium carbide powder]. Izvestiya vysshikh uchebnykh zavedenii. Fizika = Russian Physics Journal, 2013, vol. 56, no. 7-2, pp. 206–210.



38. Rempel A.A. Effekty atomno-vakansionnogo uporyadocheniya v nestekhiometricheskikh karbidakh [Atomic and vacancy ordering in nonstoichiometric carbides]. Uspekhi fizicheskikh nauk = Physics-Uspekhi, 1996, vol. 166, no. 1, pp. 32–62. (In Russian).



39. Gusev A.I. Prevrashchenie besporyadok-poryadok i fazovye ravnovesiya v sil'no nestekhiometricheskikh soedineniyakh [Order–disorder transformations and phase equilibria in strongly nonstoichiometric compounds]. Uspekhi fizicheskikh nauk = Physics-Uspekhi, 2000, vol. 170, no. 1, pp. 3–40. (In Russian).



40. Gusev A.I. Nestekhiometriya i sverkhstruktury [Nonstoichiometry and superstructures]. Uspekhi fizicheskikh nauk = Physics-Uspekhi, 2014, vol. 184, no. 9, pp. 905–945.

Acknowledgements. Funding

Funding

The results were obtained in the framework of the Integrated Project “Establishment of import-substituting high-tech full-cycle production of complex-shaped indexable carbide cutting inserts for priority industries” (Agreement No. 075-11-2019-036 dated November 27, 2019) implemented by the ISPMS SB RAS at the financial support of the Ministry of Education and Science of the Russian Federation as part of Decree of the Government of the Russian Federation No. 218 dated April 09, 2010.

 

Acknowledgements

The authors of the paper express their acknowledgement to the researcher with Abdulmenova E. for help in mechanical treatment of the powder and Professor S.N. Kulkov for a constructive discussion of the results obtained. Research were conducted at core facility "Structure, mechanical and physical properties of materials".

For citation:

Sablina T.Yu., Sevostyanova I.N. Low energy mechanical treatment of non-stoichiometric titanium carbide powder. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2021, vol. 23, no. 3, pp. 112–123. DOI: 10.17212/1994-6309-2021-23.3-112-123. (In Russian).

Views: 1232