Введение. Одной из важнейших задач при резании металлов и сплавов является контроль температурного фактора, так как температура является одним из ограничений при определении режимов резания. Этот подход позволяет определять рациональные (в некоторых случаях и оптимальные) режимы фрезерования. Экспериментальные методы определения температуры трудоемки, экономически затратные и не всегда доступны. Трудоемкость заключается в необходимости постоянной настройки экспериментального оборудования в связи с меняющимися условиями резания, электроизоляции инструмента и заготовки, появлении паразитной термоЭДС (если речь идет о методах измерения температуры термопарами), постоянной калибровке приборов и подбору коэффициентов теплового излучения (если речь идет о бесконтактных методах измерения температуры). В связи с этим возникает необходимость в теоретическом определении температур при фрезеровании с минимальным использованием экспериментальных данных. Цель работы. Разработать методику теоретического расчета температуры при фрезеровании (резании) жаропрочных материалов на никелевой основе (на примере сплава ХН56ВМКЮ-ВД (ЭП109-ВД)). Методика исследования. Для теоретического определения температур резания была сформирована математическая модель, учитывающая механические и теплофизические свойства обрабатываемого материала и их изменение в зависимости от изменения температуры при фрезеровании, геометрию режущего инструмента и особенности схематизации процесса фрезерования. Экспериментальная часть исследования проводилась на фрезерном станке КФПЭ-250 с системой ЧПУ Маяк-610. Обрабатывался материал ЭП109-ВД фрезой фирмы Seco JS513050D2C.0Z3-NXT с различными значениями скорости и подачи. Температура измерялась с помощью тепловизора модели Fluke Ti400. Результаты и их обсуждение. Разработана теоретическая модель расчета температуры (для группы сплавов ХН77ТЮР, ХН62МВТЮ, ХН73МБТЮ и ХН56ВМКЮ-ВД) при фрезеровании жаропрочных сплавов на никелевой основе, позволяющая при изменении условий резания (скорость, подача, глубина, геометрия режущего инструмента) спрогнозировать значение температуры на передней и задней поверхности режущего инструмента, а также температуру резания. Анализ экспериментальных и теоретически спрогнозированных значений температуры резания показал удовлетворительное совпадение соответствующих значений.
1. Wear behavior of solid SiAlON milling tools during high speed milling of Inconel 718 / A. Celik, M.S. Alagac, S. Turan, A. Kara, F. Kara // Wear. – 2017. – Vol. 378–379. – P. 58–67. – DOI: 10.1016/j.wear.2017.02.025.
2. Analysis of tool wear patterns in finishing turning of Inconel 718 / J.L. Cantero, J. Diaz-Alvarez, M.H. Miguelez, N.C. Marin // Wear. – 2013. – Vol. 297, iss. 1–2. – P. 885–894. – DOI: 10.1016/j.wear.2012.11.004.
3. Augspurger T., Bergs T., Döbbeler B. Measurement and modeling of heat partitions and temperature fields in the workpiece for cutting Inconel 718, AISI 1045, Ti6Al4V, and AlMgSi0.5 // Journal of Manufacturing Science and Engineering. – 2019. – Vol. 141 (6). – P. 061007. – DOI: 10.1115/1.4043311.
4. The effect of feed rate on durability and wear of exchangeable cutting inserts during cutting Ni-625 / J. Petru, T. Zlamal, R. Cep, D. Stancekova // Tehnicki Vjesnik. – 2017. – Vol. 24, suppl. 1. – P. 1–6. – DOI: 10.17559/TV-20131221170237.
5. Макаров А.Д. Оптимизация процессов резания. – М.: Машиностроение, 1976. – 278 с.
6. Modeling and optimization of temperature in end milling operations / J.C. Baralic, N.G. Ducic, A.M. Mitrovic, P.P. Kovac, M.V. Lucic // Thermal Science. – 2019. – Vol. 23, iss. 6A. – P. 3651–3660. – DOI: 10.2298/TSCI190328244B.
7. Liao Y.S., Lin H.M., Wang J.H. Behaviors of end milling Inconel 718 superalloy by cemented carbide tools // Journal of Materials Processing Technology. – 2008. – Vol. 201, iss. 1–3. – P. 460–465 – DOI: 10.1016/j.jmatprotec.2007.11.176.
8. Федоров С.В., Мин Х.С. Влияние комплексной поверхностной обработки на изнашивание фрезерных твердосплавных пластин при резании никелевого сплава // Известия вузов. Физика. – 2018. – Т. 61, № 8-2. – С. 93–97.
9. Tanaka H., Sugihara T., Enomoto T. High speed machining of Inconel 718 focusing on wear behaviors of PCBN cutting tool // Procedia CIRP. – 2016. – Vol. 46. – P. 545–548. – DOI: 10.1016/j.procir.2016.03.120.
10. Identification of temperatures in cutting zone when dry machining of nickel alloy Inconel 718 / A. Czan, M. Sajgalik, J. Holubjak, L. Zauskova, T. Czanova, P. Martikan // Procedia Manufacturing. – 2017. – Vol. 14. – P. 66–75. – DOI: 10.1016/j.promfg.2017.11.008.
11. Cutting zone temperature identification during machining of nickel alloy Inconel 718 / A. Czan, I. Danis, J. Holubjak, L. Zauskova, T. Czánová, M. Mikloš, P. Martikán // Technological Engineering. – 2017. – Vol. 14. – P. 24–29. – DOI: 10.1515/teen-2017-0017.
12. Coz G.L., Dudzinski D. Temperature variation in the work piece and in the cutting tool when dry milling Inconel 718 // International Journal of Advanced Manufacturing Technology. – 2014. – Vol. 74, iss. 5–8. – P. 1133–1139. – DOI: 10.1007/s00170-014-6006-1.
13. Sato M., Tamura N., Tanaka H. Temperature variation in the cutting tool in end milling // Journal of Manufacturing Science and Engineering. – 2011. – Vol. 133, iss. 2. – P. 021005. – DOI: 10.1115/1.4003615.
14. Ozela T., Altan T. Process simulation using finite element method – prediction of cutting forces, tool stresses and temperatures in high-speed flat end milling // International Journal of Machine Tools and Manufacture. – 2000. – Vol. 40, iss. 5. – P. 713–738. – DOI: 10.1016/S0890-6955(99)00080-2.
15. Heisel U., Kushner V., Storchak M. Effect of machining conditions on specific tangential forces // Production Engineering. – 2012. – Vol. 6, iss. 6. – P. 621–629. – DOI: 10.1007/s11740-012-0417-3.
16. Разработка математической модели кривой течения сплавов при адиабатических условиях деформирования / В.С. Кушнер, М.Г. Сторчак, О.Ю. Бургонова, Д.С. Губин // Заводская лаборатория. Диагностика материалов. – 2017. – Т. 83, № 5. – С. 45–49. – URL: https://www.zldm.ru/jour/article/view/477/478 (дата обращения: 27.01.2022).
17. High speed turning of Inconel 718 using PVD-coated PCBN tools / S.L. Soo, S.A. Khan, D.K. Aspinwall, P. Harden, A.L. Mantle, G. Kappmeyer, D. Pearson, R. M’Saoubi // CIRP Annals – Manufacturing Technology. – 2016. – Vol. 65, iss. 1. – P. 89–92. – DOI: 10.1016/j.cirp.2016.04.044.
18. Analytical modelling methods for temperature fields in metal cutting based on panel method of fluid mechanics / F. Klocke, M. Brockmann, S. Gierlings, D. Veselovac, D. Kever, B. Roidl, G. Schmidt, U. Semmler // Procedia CIRP. – 2015. – Vol. 31. – P. 352–356. – DOI: 10.1016/j.procir.2015.03.067.
19. Experimental studies for verification of thermal effects in cutting / U. Heisel, M. Storchak, P. Eberhard, T. Gaugele // Production Engineering. – 2011. – Vol. 5. – P. 507–515. – DOI: 10.1007/s11740-011-0312-3.
20. Shrot A., Baker M. Determination of Johnson–Cook parameters from machining simulations // Computational Materials Science. – 2012. – Vol. 52, iss. 1. – P. 298–304. – DOI: 10.1016/j.commatsci.2011.07.035.
Благодарности:
Исследования выполнены на оборудовании ЦКП «Структура, механические и физические свойства материалов».
Губин Д.С., Кисель А.Г. Расчет температур при чистовом фрезеровании жаропрочного сплава марки ХН56ВМКЮ-ВД // Обработка металлов (технология, оборудование, инструменты). – 2022. – Т. 24, № 1. – С. 23–32. – DOI: 10.17212/1994-6309-2022-24.1-23-32.
Gubin D.S., Kisel’ A.G. Calculation of temperatures during finishing milling of a nickel based alloys. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2022, vol. 24, no. 1, pp. 23–32. DOI: 10.17212/1994-6309-2022-24.1-23-32. (In Russian).