Obrabotka metallov

OBRABOTKA METALLOV

METAL WORKING AND MATERIAL SCIENCE
Print ISSN: 1994-6309    Online ISSN: 2541-819X
English | Русский

Recent issue
Vol. 27, No 3 July – September 2025

Effect of mechanical activation of tungsten powder on the structure and properties of the sintered Sn-Cu-Co-W material

Vol. 24, No 1 January - March 2022
Authors:

Ozolin Alexander,
Sokolov Evgeny
DOI: http://dx.doi.org/10.17212/1994-6309-2022-24.1-48-60
Abstract

Introduction. One of the methods for improving the properties of sintered materials is mechanical activation of powders. It ensures milling the powders, changing its energy state, intensifying the sintering of powder materials, and forming a fine-grained structure in it. When tungsten powders are mechanically activated in planetary centrifugal mills, nanoparticles can be formed, which have a high reactive power. The objective of the paper is to study the effect of mechanical activation of tungsten particles on the structure and properties of the sintered Sn-Cu-Co-W powder material. Research technique: Mechanical activation of W16,5 grade tungsten powder is carried out in a planetary centrifugal ball mill AGO-2U for 5…120 minutes with carrier speeds of 400…1,000 rpm. The mixture of tungsten, tin, copper, and cobalt powders are compacted by static pressing in molds and then sintered in vacuum at 820 °C. The morphology and size of powder particles, as well as the structure of the sintered samples, are studied by scanning electronic microscopy, X-ray microanalysis, and optical metallography. Porosity of the sintered samples is identified by the gravimetric method. Microhardness of the structural constituents and macrohardness of the sintered materials are measured, too. Results: in the modes under study, mechanical activation is accompanied by the formation of tungsten nanoparticles with the minimum size of 25 nm. Alongside this, the powder is exposed to cold working, which hinders further milling. Tungsten nanoparticles, characterized by high surface energy, have a significant effect on the dissolution-precipitation of cobalt during liquid-phase sintering of Sn-Cu-Co-W powder material. Addition of nanodispersed tungsten into the material slows down the growth of cobalt particles during sintering and contributes to the formation of a fine-grained structure. The sintered Sn-Cu-Co-W material, containing mechanically activated tungsten, features higher hardness of 105…107 HRB, which is explained by cold working of tungsten particles and dispersion hardening. The results can be applied for improving mechanical properties of Sn-Cu-Co-W alloys used as metallic binders in diamond abrasive tools.


Keywords: Mechanical activation, nanoparticles, tungsten, liquid phase sintering, metallic binders, diamond abrasive tools

References

1. Konstanty J. Powder metallurgy diamond tools. Oxford, Elsevier, 2005. 152 p. ISBN 978-1-85617-440-4. DOI: 10.1016/B978-1-85617-440-4.X5077-9.



2. Novikov M.V., Mechnyk V.A., Bondarenko M.O., Lyashenko B.A., Kuzin M.O. Composite materials of diamond−(Co–Cu–Sn) system with improved mechanical characteristics. Part 1. The influence of hot re-pressing on the structure and properties of diamond−(Co–Cu–Sn) composite. Journal of Superhard Materials, 2015, vol. 37, pp. 402–416. DOI: 10.3103/S1063457615060052.



3.  Sokolov E.G. Structure formation during liquid-phase sintering of the diamond-containing composites with Sn-Cu-Co-W binders. Solid State Phenomena, 2018, vol. 284, pp. 127–132. DOI: 10.4028/www.scientific.net/SSP.284.127.



4.  Chuvil'deev V.N., Nokhrin A.V., Baranov G.V., Moskvicheva A.V., Lopatin Yu.G., Kotkov D.N., Blagoveshhensky Yu.V., Kozlova N.A., Shotin S.V., Konychev D.A., Piskunov A.V. Issledovanie struktury i mekhanicheskikh svoistv nano- i ul'tradispersnykh mekhanoaktivirovannykh vol'framovykh psevdosplavov [Investigations of structure and mechanical properties of nano and superdispersed mechanically activated tungsten pseudoalloys]. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo = Vestnik of Lobachevsky State University of Nizhni Novgorod, 2010, no. 2 (1), pp. 47–59.



5.  Chuvil'deev V.N., Nokhrin A.V., Baranov G.V., Boldin M.S., Moskvicheva A.V., Sakharov N.V., Kotkov D.N., Lopatin Yu.G., Belov V.Yu., Blagoveshhenskii Yu.V., Kozlova N.A., Konychev D.A., Isaeva N.V. Issledovanie protsessov spekaniya nano- i ul'tradispersnykh mekhanoaktivirovannykh poroshkov sistemy W-Ni-Fe i poluchenie sverkhprochnykh tyazhelykh vol'framovykh splavov [Sintering of nano- and ultradispersed mechanically activated W-Ni-Fe powders and the manufacture of ultrahigh-strength heavy tungsten alloys]. Metally = Metals, 2014, no. 2, pp. 51–66. (In Russian).



6.  Pillari L.K., Bakshi S.R., Chaudhuri P., Murty B.S. Fabrication of W-Cu functionally graded composites using high energy ball milling and spark plasma sintering for plasma facing components. Advanced Powder Technology, 2020, vol. 31 (8), pp. 3657–3666. DOI: 10.1016/j.apt.2020.07.015.



7.  Ding L., Xiang D.P., Li Y.Y., Li C., Li J.B. Effects of sintering temperature on fine-grained tungsten heavy alloy produced by high-energy ball milling assisted spark plasma sintering. Journal of Refractory Metals and Hard Materials, 2012, vol. 33, pp. 65–69. DOI: 10.1016/j.ijrmhm.2012.02.017.



8.  Liang Y.X., Wu Z.M., Fu E.G., Du J.L., Wang P.P., Zhao Y.B., Qiu Y.H., Hu Z.Y. Refinement process and mechanisms of tungsten powder by high energy ball milling. International Journal of Refractory Metals and Hard Materials, 2017, vol. 67, pp. 1–8. DOI: 10.1016/j.ijrmhm.2017.04.006.



9.  Polushin N.I., Kudinov A.V., Zhuravlev V.V., Stepareva N.N., Maslov A.L. Dispersed strengthening of a diamond composite electrochemical coating with nanoparticles. Russian Journal of Non-Ferrous Metals, 2013, vol. 54, pp. 412–416. DOI: 10.3103/S1067821213050088.



10.  Vityaz’ P.A., Zhornik V.I., Kovaleva S.A., Kukareko V.A. Variation in the structure and properties of sintered alloys under the effect of nanodimensional carbon additives. Russian Journal of Non-Ferrous Metals, 2016, vol. 57, pp. 135–140. DOI: 10.3103/S1067821216020115.



11.  Loginov P.A., Sidorenko D.A., Bychkova M.Y., Zaitsev A.A., Levashov E.A. Performance of diamond drill bits with hybrid nanoreinforced Fe-Ni-Mo binder. International Journal of Advanced Manufacturing Technology, 2019, vol. 102, pp. 2041–2047. DOI: 10.1007/s00170-018-03262-0.



12.  Sun Y., Wu H., Li M., Meng Q., Gao K., Lü X., Liu B. The effect of ZrO2 nanoparticles on the microstructure and properties of sintered WC–bronze-based diamond composites. Materials, 2016, vol. 9, no. 343. DOI: 10.3390/ma9050343.



13.  Sharin P.P. Novyi metod prigotovleniya tverdosplavnoi shikhty s uprochnyayushchimi nanochastitsami dlya izgotovleniya matrits almaznykh instrumentov [New method of preparation of carbide mixture with a reinforcing nanoparticles for making of the matrix of diamond tools]. Vestnik Severo-Vostochnogo federal'nogo universiteta im. M.K. Ammosova = Vestnik of North-Eastern Federal University, 2016, no. 1 (51), pp. 78–87.



14.  Geguzin Ya.E. Fizika spekaniya [Physics of sintering]. Moscow, Nauka Publ., 1967. 360 p.



15.  Obraztsov I.F., Lur'e S.A., Belov P.A., Volkov-Bogorodskii D.B., Janovskii Yu.G., Kochemasova E.I., Dudchenko A.A., Potupchik E.M., Shumova N.P. Osnovy teorii mezhfaznogo sloya [Fundamentals theory of the interfacial layer]. Mekhanika kompozitsionnykh materialov i konstruktsii = Journal on Composite Mechanics and Design, 2004, vol. 10, no. 4, pp. 596–612. (In Russian).



16.  Lurie S., Volkov-Bogorodskiy D., Solyaev Y., Rizahanov R., Agureev L. Multiscale modelling of aluminium-based metal-matrix composites with oxide nanoinclusions. Computational Materials Science, 2016, vol. 116, pp. 62–73. DOI: 10.1016/j.commatsci.2015.12.034.



17.  Kostikov V.I., Agureev L.E., Eremeeva Z.V. Development of nanoparticle-reinforced alumocomposites for rocket-space engineering. Russian Journal of Non-Ferrous Metals, 2015, vol. 56 (3), pp. 325–328. DOI: 10.3103/S1067821215030104.



18.  Zelikman A.N. Metallurgiya tugoplavkikh redkikh metallov [Metallurgy of refractory rare metals]. Moscow, Metallurgiya Publ., 1986. 440 p.



19.  Predescu C., Nicolicescu C., Nicoara V.H. Studies regarding the elaboration of tungsten nanopowders by mechanical milling process. Metalurgia International, 2013, vol. 18, iss. 2, pp. 65–68.



20.  Ozolin A.V., Sokolov E.G., Gaponenko S.A. [Obtaining nanodispersed tungsten powders by mechanical grinding]. Materialy i tekhnologii XXI veka: XVI Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya [Materials and technologies of the XXI century]. Penza, Privolzhskii dom znanii Publ., 2019, pp. 46–50. (In Russian).



21.  Sokolov E.G., Artemyev V.P. Vliyanie vol'frama na svoistva metallicheskikh svyazok almaznykh instrumentov, poluchennykh kompozitsionnoi paikoi [Influence of tungsten on properties of metal joints of diamond tools, made by composite soldering]. Tekhnologiya metallov = Metal Technology, 2015, no. 2, pp. 19–22. (In Russian).



22.  Lyakishev N.P., ed. Diagrammy dvoinykh metallicheskikh system: spravochnik. V 3 t. T. 2 [Diagrams of dual metal systems: guide. In 3 vol. Vol. 2]. Moscow, Mashinostroenie Publ., 1997. 1024 p. ISBN 5-217-01569-1.



23.  Ozolin A.V., Sokolov E.G., Golius D.A. Effect of tungsten nanoparticles on interaction of Sn-Cu-Co metallic matrices with diamond. IOP Conference Series: Materials Science and Engineering, 2021, vol. 1155, p. 012016. DOI: 10.1088/1757-899X/1155/1/012016.



24.  Ivensen V.A. Fenomenologiya spekaniya i nekotorye voprosy teorii [The phenomenology of sintering and some questions of the theory]. Moscow, Metallurgiya Publ., 1985. 247 p. (In Russian).



25.  German R.M. Sintering: From empirical observations to scientific principles. Oxford, Butterworth-Heinemann, 2014. 544 p. ISBN 978-0-12-401682-8. DOI: 10.1016/C2012-0-00717-X.



26.  Shatinskii V.F., Zbozhnaya O.M., Maksimovich G.G. Poluchenie diffuzionnykh pokrytii v srede legkoplavkikh metallov [Production of diffusion coatings in the environment of low-melting metals]. Kiev, Naukova dumka Publ., 1976. 203 p.



27.  Vitos L., Ruban A.V., Skriver H.L., Kollár J. The surface energy of metals. Surface Science, 1998, vol. 411, pp. 186–202. DOI: 10.1016/S0039-6028(98)00363-X.



28.       Esenberlin R.E. Paika i termicheskaya obrabotka detalei v gazovoi srede i vakuume [Soldering and heat treatment of parts in a gas environment and in a vacuum]. Leningrad, Mashinostroenie Publ., 1972. 184 p.

Acknowledgements. Funding

The research was carried out with the financial support of the Council for Grants of the President of the Russian Federation for state support of young Russian scientists and for state support of leading scientific schools of the Russian Federation, No. SP-5863.2021.1.

For citation:

Ozolin A.V., Sokolov E.G. Effect of mechanical activation of tungsten powder on the structure and properties of the sintered Sn-Cu-Co-W material. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2022, vol. 24, no. 1, pp. 48–60. DOI: 10.17212/1994-6309-2022-24.1-48-60. (In Russian).

Views: 2400