Obrabotka metallov

OBRABOTKA METALLOV

METAL WORKING AND MATERIAL SCIENCE
Print ISSN: 1994-6309    Online ISSN: 2541-819X
English | Русский

Recent issue
Vol. 27, No 3 July – September 2025

Comparative study of cavitation erosion resistance of austenitic steels with different levels of metastability

Vol. 24, No 1 January - March 2022
Authors:

Korobov Yury,
Alwan Hussam,
Makarov Aleksey,
Kukareko Vladimir,
Sirosh Vitaliy,
Filippov Michael,
Estemirova Svetlana
DOI: http://dx.doi.org/10.17212/1994-6309-2022-24.1-61-72
Abstract

Introduction. Reliability-critical components of equipment working in contact with high-speed liquid media (for example, turbine blades of hydroelectric power stations, pump impellers, ship propellers) are subjected to one of the types of wear – cavitation erosion. The current study aims to select and scientifically substantiate the type of coating and its structural-phase state for the effective protection of parts from cavitation erosion. Research methods. The study carries out a comparative analysis of differences in the cavitation erosion resistance of characteristic austenitic steels, in the form of bulk material (316L) and coatings (E308L, 60Cr8TiAl), used for protection against cavitation Arc surfacing, i.e. MMA and MIG, is used for depositing the coatings. The tests are carried out on an original installation for evaluating the cavitation resistance of materials with applying ultrasound and the electrical potential difference. Results and Discussion. The results show that the 60Cr8TiAl has a higher resistance to cavitation erosion than that of E308L and 316L by 4 and 10 times, respectively. The structural factors that determine the resistance to cavitation erosion damage are identified to analyze the reasons for the differences in material resistance. Firstly, a strong dependence of the cavitation erosion resistance of austenitic steels on the intensity of the deformation martensitic transformation, developing under the influence of cavitation, is confirmed. This structural transformation contributes to an increase in cavitation resistance of the surface layer. In metastable austenitic steel, a deformation martensite (α′) is formed in the surface layer during the initial test period. This causes an increase in hardness, dissipation of the energy of external action, and the appearance of compressive stresses that prevent the occurrence of microcracks. Subsequently, additional hardening of the previously formed dispersed crystals of α′-martensite occurs. In 60Cr8TiAl, these effects are significantly stronger than that of E308L and 316L due to the higher level of metastability of austenite and formation of carbon deformation martensite.


Keywords: Cavitation erosion resistance, metastable austenite, martensitic phase transformation, microstructure, deposited coatings

References

1. Bogachev I.N. Kavitatsionnoe razrushenie i kavitatsionnostoikie splavy [Cavitation destruction and cavitation-resistant alloys]. Moscow, Metallurgiya Publ., 1972. 192 p.



2. Singh R., Tiwari S.K., Mishra S.K. Cavitation erosion in hydraulic turbine components and mitigation by coatings: current status and future needs. Journal of Materials Engineering and Performance, 2012, vol. 21, pp. 1539–1551. DOI: 10.1007/s11665-011-0051-9.



3. Adamkowski A., Henke A., Lewandowski M. Resonance of torsional vibrations of centrifugal pump shafts due to cavitation erosion of pump impellers. Engineering Failure Analysis, 2016, vol. 70, pp. 56–72. DOI: 10.1016/j.engfailanal.2016.07.011.



4. Gorbachenko E.O. Otsenka dolgovechnosti metallicheskikh materialov i sudovogo oborudovaniya pri kavitatsionnom iznashivanii metodom profilometrii. Diss. kand. tekhn. nauk [Evaluation of the durability of metallic materials and ship equipment during cavitation wear by the profilometry method. PhD eng. sci. diss.]. St. Petersburg, 2019. 150 p.



5. Korobov Yu.S., Alwan H.L., Barbosa M., Lezhnin N.V., Soboleva N.N., Makarov A.V., Deviatiarov M.S., Davydov A.Yu. Soprotivlenie erozionno-korrozionnomu kavitatsionnomu vozdeistviyu WC–CoCr- i WC–NiCr-pokrytii, poluchennykh metodom HVAF [Cavitation erosion-corrosion resistance of WC–CoCr and WC–NiCr HVAF coatings]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie = Bulletin PNRPU. Mechanical engineering, materials science, 2019, vol. 21, no. 1, pp. 20–27. DOI: 10.15593/2224-9877/2019.1.03.



6. Vyas B., Preece C. Cavitation erosion of face centered cubic metals. Metallurgical and Materials Transactions A, 1977, vol. 8, pp. 915–923. DOI: 10.1007/BF02661573.



7. Brujan E.A., Ikedab T., Matsumoto Y. Shock wave emission from a cloud of bubbles. Soft Matter, 2012, vol. 8, iss. 21, pp. 5777–5783. DOI: 10.1039/C2SM25379H.



8. Lauterborn W., Bolle H. Experimental investigation of cavitation bubble collapse in the neighborhood of a solid boundary. Journal of Fluid Mechanics, 1975, vol. 72, pp. 391–399. DOI: 10.1017/S0022112075003448.



9. Plesset M.S., Chapman R.B. Collapse of an initially spherical vapor cavity in the neighborhood of a solid boundary. Journal of Fluid Mechanics, 1971, vol. 47, pp. 283–290. DOI: 10.1017/S0022112071001058.



10. Dular M., Bachert B., Stoffel B., Širok B. Relationship between cavitation structures and cavitation damage. Wear, 2004, vol. 257, pp. 1176–11841. DOI: 10.1016/j.wear.2004.08.004.



11. Vyas B., Preece C. Stress produced in a solid by cavitation. Journal of Applied Physics, 1976, vol. 47, pp. 5133–5138. DOI: 10.1063/1.322584.



12. Pohl M., Stella J., Hessing C. Comparative study on CuZnAl and CuMnZnAlNiFe shape memory alloys subjected to cavitation-erosion. Advanced Engineering Materials, 2003, vol. 5, pp. 251–256. DOI: 10.1002/adem.200300341.



13. Espitia L.A., Toro A. Cavitation resistance, microstructure and surface topography of materials used for hydraulic components. Tribology International, 2010, vol. 43, pp. 2037–2045. DOI: 10.1016/j.triboint.2010.05.009.



14. Chiu K.Y., Cheng F.T., Man H.C. Cavitation erosion resistance of AISI 316L stainless steel laser surface-modified with NiTi. Materials Science and Engineering: A, 2005, vol. 392, pp. 348–358. DOI: 10.1016/j.msea.2004.09.035.



15. Chen M., Liu H., Wang L., Xu Z., Ji V., Jiang C. Residual stress and microstructure evolutions of SAF 2507 duplex stainless steel after shot peening. Applied Surface Science, 2018, vol. 459, pp. 155–163. DOI: 10.1016/j.apsusc.2018.07.182.



16. Park I.-C., Kim S.-J. Effect of pH of the sulfuric acid bath on cavitation erosion behavior in natural seawater of electroless nickel plating coating. Applied Surface Science, 2019, vol. 483, pp. 194–204. DOI: 10.1016/j.apsusc.2019.03.277.



17. Alwan H.L., Korobov Yu.S., Soboleva N.N., Lezhnin N.V., Makarov A.V., Nikolaeva E.P., Deviatiarov M.S. Cavitation erosion-corrosion resistance of deposited austenitic stainless steel/E308L-17 electrode. Solid State Phenomena, 2020, vol. 299, pp. 908–913. DOI: 10.4028/www.scientific.net/SSP.299.908.



18. Gualco A., Svoboda H.G., Surian E.S. Effect of welding parameters on microstructure of Fe-based nanostructured weld overlay deposited through FCAW-S. Welding International, 2016, vol. 30, pp. 573–580. DOI: 10.1080/ 09507116.2015.1096533.



19. Sreedhar B.K., Albert S.K., Pandit A.B. Improving cavitation erosion resistance of austenitic stainless steel in liquid sodium by hardfacing – comparison of Ni and Co based deposits. Wear, 2015, vol. 342–343, pp. 92–99. DOI: 10.1016/j. wear.2015.08.009.



20. Matikainen V., Niemi K., Koivuluoto H., Vuoristo P. Abrasion, erosion and cavitation erosion wear properties of thermally sprayed alumina based coatings. Coatings, 2014, vol. 4, pp. 18–36. DOI: 10.3390/coatings4010018.



21. Kumar R.K., Kamaraj M., Seetharamu S., Pramod T., Sampathkumaran P. Effect of spray particle velocity on cavitation erosion resistance characteristics of HVOF and HVAF processed 86WC-10Co4Cr hydro turbine coatings. Journal of Thermal Spray Technology, 2016, vol. 25, pp. 1217–1230. DOI: 10.1007/s11666-016-0427-3.



22. Li J., Kannan R., Shi M., Li L. Solidified microstructure of wear-resistant Fe-Cr-C-B overlays. Metallurgical and Materials Transactions B, 2020, vol. 51, pp. 1291–1300. DOI: 10.1007/s11663-020-01863-3.



23. Tôn-Thât L. Experimental comparison of cavitation erosion rates of different steels used in hydraulic turbines. IOP Conference Series: Earth and Environmental Science, 2010, vol. 12, pp. 1–9. DOI: 10.1088/1755-1315/12/1/012052.



24. Kumar A., Boy J., Zatorski R., Stephenson L.D. Thermal spray and weld repair alloys for the repair of cavitation damage in turbines and pumps: a technical note. Journal of Thermal Spray Technology, 2005, vol. 14, pp. 177–182. DOI: 10.1361/10599630523737.



25. Filippov M.A., Filippenkov A.A., Plotnikov G.N. Iznosostoikie stali dlya otlivok [Wear-resistant steels for castings]. Ekaterinburg, UGTU-UPI Publ., 2009. 358 p. ISBN 978-5-321-01473-8.



26. Heathcock C.J., Protheroe B.E., Ball A. Cavitation erosion of stainless steels. Wear, 1982, vol. 81, pp. 311–327. DOI: 10.1016/0043-1648(82)90278-2.



27. Zhang L.M., Li Z.X., Hu J.X., Ma A.L., Zhang S., Daniel E.F., Umoh A.J., Hu H.X., Zheng Y.G. Understanding the roles of deformation-induced martensite of 304 stainless steel in different stages of cavitation erosion. Tribology International, 2021, vol. 155, p. 106752. DOI: 10.1016/j.triboint.2020.106752.



28. Lobodyuk V.A., Estrin E.I. Martensitnye prevrashcheniya [Martensitic transformations]. Moscow, Fizmatlit Publ., 2016. 350 p. ISBN 978-5-9221-1018-1.



29. Korobov Yu.S., Pimenova O.V., Filippov M.A., Khadyev M.S., Ozerets N.N., Mikhailov S.B., Morozov S.O., Davydov Yu.S., Razikov N.M. Structural features of welded joint of medium-carbon chromium steel containing metastable austenite. Inorganic Materials: Applied Research, 2020, vol. 11, pp. 132–139. DOI: 10.113 4/S2075113320010220.



30. Korobov Yu., Verkhorubov V., Nevezhin S., Filippov M., Tkachuk G.A., Makarov A., Zabolotskikh I. An influence of strain-induced nucleation of martensitic transformations on tribological properties of sprayed and surfaced depositions. International Thermal Spray Conference and Exposition ITSC, Shanghai, China, 2016, pp. 694–699.



31. G 32-10. Standard test method for cavitation erosion using vibratory apparatus. Annual Book of ASTM Standards. ASTM, 2011. 20 p.



32. Shumyakov V.I., Korobov Yu.S., Alvan Kh.L., Lezhnin N.V., Makarov A.V., Devyat'yarov M.S. Ustanovka dlya ispytaniya na kavitatsionnuyu eroziyu [Installation for cavitation erosion testing]. Patent RF, no. 2710480, 2019.



33. Arora H.S., Rani M., Perumal G., Singh H., Grewal H.S. Enhanced cavitation erosion–corrosion resistance of high-velocity oxy-fuel-sprayed Ni-Cr-Al2O3 coatings through stationary friction processing. Journal of Thermal Spray Technology, 2020, vol. 29, pp. 1183–1194. DOI: 10.1007/s11666-020-01050-5.



34. Tsvetkov Yu.N., Gorbachenko E.O. Ispytaniya stalei na kavitatsionnoe iznashivanie s primeneniem metoda izmereniya profilya poverkhnosti [Profilometric measurements in accelerated testing of steels for cavitation wear]. Zavodskaya laboratoriya. Diagnostika materialov = Industrial laboratory. Diagnostics of materials, 2017, vol. 83, no. 7, pp. 54–58.



35. Lipold J.C., Kotecki D.J. Welding metallurgy and weldability of stainless steels. Hoboken, NJ, Wiley, 2005. 357 p. ISBN 0-471-47379-0.



36. Makarov E.L., ed. Svarka i svarivaemye materialy. V 3 t. T. 1. Svarivaemost' materialov [Welding and materials to be welded. In 3 vol. Vol. 1. Weldability of materials]. Moscow, Metallurgiya Publ., 1991. 528 p. ISBN 5-229-00816-4.



37. Zhang L.M., Li Z.X., Hu J.X., Ma A.L., Zhang S., Daniel E.F., Umoh A.J., Hu H.X., Zheng Y.G. Understanding the roles of deformation-induced martensite of 304 stainless steel in different stages of cavitation erosion. Tribology International, 2021, vol. 155, p. 106752. DOI: 10.1016/j.triboint.2020.106752.



38. Santos L.L., Cardoso R.P., Brunatto S.F. Direct correlation between martensitic transformation and incubation-acceleration transition in solution-treated AISI 304 austenitic stainless steel cavitation. Wear, 2020, vol. 462–463, p. 203522. DOI: 10.1016/j.wear.2020.203522.

Acknowledgements. Funding

Funding:

The work was carried out within the framework of the state assignment of the IMF UB RAS on topics No. AAAA-A18-118020190116-6, No. AAAA-A19-119070490049-8. This study was supported by project No. IRA-SME-66316 “cladHEA +” under the M-ERA.NET program, Call 2019-II.

Acknowledgements:

Research were partially conducted at core facility “Structure, mechanical and physical properties of materials”.

For citation:

Korobov Yu.S., Alwan H.L., Makarov A.V., Kukareko V.A., Sirosh V.A., Filippov M.A., Estemirova S.Kh. Comparative study of cavitation erosion resistance of austenitic steels with different levels of metastability. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2022, vol. 24, no. 1, pp. 61–72. DOI: 10.17212/1994-6309-2022-24.1-61-72. (In Russian).

Views: 2875