Обработка металлов

ОБРАБОТКА МЕТАЛЛОВ

ТЕХНОЛОГИЯ • ОБОРУДОВАНИЕ • ИНСТРУМЕНТЫ
Print ISSN: 1994-6309    Online ISSN: 2541-819X
English | Русский

Последний выпуск
Том 26, № 1 Январь - Март 2024

Деформационная способность сплава с памятью формы TiNiHf при прокатке с импульсным током

Том 24, № 3 Июль - Сентябрь 2022
Авторы:

Столяров Владимир Владимирович,
Андреев Владимир Александрович,
Карелин Роман Дмитриевич,
Угурчиев Умар,
Черкасов Владимир Владимирович,
Комаров Виктор Сергеевич,
Юсупов Владимир Сабитович
DOI: http://dx.doi.org/10.17212/1994-6309-2022-24.3-66-75
Аннотация

Введение. Деформационная способность материалов является одной из основных механических характеристик, определяющих возможность их производства с применением различных технологических процессов обработки металлов давлением. Среди интерметаллических соединений особая роль принадлежит сплавам с высокотемпературным эффектом памяти формы (ЭПФ) на основе TiNi легированных гафния. Большинство таких сплавов являются не только трудно деформируемыми, но и достаточно хрупкими. Поэтому разработка любых технологических схем для повышения деформационной способности данных сплавов является актуальной. Цель работы: исследование деформационной способности и возможности применения электрического импульсного тока при холодной прокатке сплава TiNiHf. Данный способ обработки ранее не применялся к этим сплавам. В работе исследована деформационная способность при холодной прокатке полосы толщиной 2 мм из труднодеформируемого высокотемпературного сплава с памятью формы на основе TiNi с добавкой гафния. Для повышения деформируемости использовали внешнее воздействие в виде импульсного тока высокой плотности более 200 А/мм2. Методами исследования являлись: рентгенографический анализ с целью оценки исходного фазового состояния, анализ эволюция истинной и инженерной деформации до разрушения (появления видимых макротрещин в зоне деформирования), оптическая микроскопия с увеличением от 50 до 100 и измерение твердости по Виккерсу при комнатной температуре. Результаты и обсуждение. Установлено повышение деформируемости при воздействии импульсного тока по сравнению с прокаткой без тока и достижение максимальной деформации 1,7 (истинная) и 85 % (инженерная). Исходная крупнозернистая равноосная мартенситная микроструктура (50 мкм) трансформируется в вытянутую вдоль направления прокатки микроструктуру, при этом твердость повышается на 50 %. Отсутствие заметных структурных изменений и наблюдающееся упрочнение могут свидетельствовать о нетепловом эффекте тока в повышении деформируемости. Таким образом, результаты проведенных исследований свидетельствуют о перспективности применения метода прокатки с током труднодеформируемого сплава TiNiHf с памятью формы в качестве способа обработки металлов давлением.


Ключевые слова: Сплав с памятью формы, прокатка, импульсный ток, структура, деформируемость, твердость

Список литературы

1. Физические основы и технологии обработки современных материалов (теория, технология, структура и свойства). В 2 т. Т. 1 / О.А. Троицкий, Ю.В. Баранов, Ю.С. Аврамов, А.Д. Шляпин. – М.: Ижевск: Ин-т компьютер. технологий, 2004. – 590 с.



2. Влияние режимов электропластической деформации на деформируемость и функциональные свойства сплава Ti-Ni с памятью формы / И.Б. Гуртовая, К.Э. Инаекян, А.В. Коротицкий, У.Х. Угурчиев, С.Ю. Макушев, И.Ю. Хмелевская, Е.С. Данилова, А.Е. Сергеева, В.В. Столяров, С.Д. Прокошкин // Журнал функциональных материалов. – 2008. – Т. 2, № 4. – С. 130–137.



3. Исследование возможности применения электропластической прокатки для получения прутков из сплава TiNi / А.А. Потапова, В.В. Столяров, А.Б. Бондарев, В.А. Андреев // Машиностроение и инженерное образование. – 2012. – № 2. – С. 33–38.



4. Меденцов В.Э., Столяров В.В. Особенности деформирования, структура и механические свойства сплава ВТ6 при электропластической прокатке // Деформация и разрушение материалов. – 2012. – № 12. – С. 37–41.



5. Effect of pulsed current on structure of Al–Mg–Si aluminum-based alloy during cold deformation / I.G. Brodova, I.G. Shirinkina, V.V. Astaf’ev, T.I. Yablonskikh, A.A. Potapova, V.V. Stolyarov // Physics of Metals and Metallography. – 2013. – Vol. 114 (11). – P. 940–946. – DOI: 10.1134/S0031918X13110021.



6. Комбинирование методов интенсивной пластической деформации конструкционных сталей / А.М. Иванов, У.Х. Угурчиев, В.В. Столяров, Н.Д. Петрова, А.А. Платонов // Известия высших учебных заведений. Черная металлургия. – 2012. – № 6. – С. 54–57.



7. Research of electroplastic rolling of AZ31 Mg alloy strip / Z. Xu, G. Tang, S. Tian, F. Ding, H. Tian // Journal of Materials Processing Technology. – 2007. – Vol. 182 (1–3). – P. 128–133. – DOI: 10.1016/j.jmatprotec.2006.07.019.



8. Effects of electroplastic rolling on mechanical properties and microstructure of low-carbon martensitic steel / L. Qian, L. Zhan, B. Zhou, X. Zhang, S. Liu, Z. Lv // Materials Science and Engineering: A. – 2021. – Vol. 812. – P. 141144. – DOI: 10.1016/j.msea.2021.141144.



9. Effect of electroplastic rolling on the ductility and superelasticity of TiNi shape memory alloy / R.F. Zhu, G.Y. Tang, S.Q. Shi, M.W. Fu // Materials and Design. – 2013. – Vol. 44. – P. 606–611. – DOI: 10.1016/j.matdes.2012.08.045.



10. Guan L., Tang G., Chu P.K. Recent advances and challenges in electroplastic manufacturing processing of metals // Journal of Materials Research. – 2010. – Vol. 25 (7). – P. 1215–1224. – DOI: 10.1557/JMR.2010.0170.



11. Effect of electroplastic rolling on deformability and oxidation of NiTiNb shape memory alloy / R. Zhu, G. Tang, S. Shi, M. Fu // Journal of Materials Processing Technology. – 2013. – Vol. 213 (1). – P. 30–35. – DOI: 10.1016/j.jmatprotec.2012.08.001.



12. Mal’tsev I.M. Electroplastic rolling of metals with a high-density current // Russian Journal of Non-Ferrous Metals. – 2008. – Vol. 49. – P. 175–180. – DOI: 10.3103/S1067821208030097.



13. Improvement of formability of Mg–3Al–1Zn alloy strip by electroplastic-differential speed rolling / X. Li, F. Wang, X. Li, G. Tang, J. Zhu // Materials Science and Engineering: A. – 2014. – Vol. 618. – P. 500–504. – DOI: 10.1016/j.msea.2014.09.060.



14. Effect of strain rate on microstructure and mechanical properties of electroplastic rolled ZrTi alloy / D.F. Guo, W.K. Deng, P. Song, X.L. Lv, Y. Shi, Z.H. Qu, G.S. Zhang // Advanced Engineering Materials. – 2022. – P. 202101366. – DOI: 10.1002/adem.202101366.



15. Microstructure dependent electroplastic effect in AA 6063 alloy and its nanocomposites / J. Tiwari, P. Pratheesh, O.B. Bembalge, H. Krishnaswamy, M. Amirthalingam, S.K.  Panigrahi // Journal of Materials Research and Technology. – 2021. – Vol. 12. – P. 2185–2204. – DOI: 10.1016/j.jmrt.2021.03.112.



16. Deformation behavior, structure, and properties of an aging Ti-Ni shape memory alloy after compression deformation in a wide temperature range / V. Komarov, I. Khmelevskaya, R. Karelin, R. Kawalla, G. Korpala, U. Prahl, S. Prokoshkin // JOM. – 2021. – Vol. 73 (2). – P. 620–629. – DOI: 10.1007/s11837-020-04508-7.



17. Effect of quasi-continuous equal-channel angular pressing on structure and properties of Ti-Ni shape memory alloys / R.D. Karelin, I.Y. Khmelevskaya, V.S. Komarov, V.A. Andreev, M.M. Perkas, V.S. Yusupov, S.D. Prokoshkin // Journal of Materials Engineering and Performance. – 2021. – Vol. 30 (4). – P. 3096–3106. – DOI: 10.1007/s11665-021-05625-3.



18. Effects of cold and warm rolling on the shape memory response of Ni50Ti30Hf20 high-temperature shape memory alloy / N. Babacan, M. Bilal, C. Hayrettin, J. Liu, O. Benafan, I. Karaman // Acta Materialia. – 2018. – Vol. 157. – P. 228–244. – DOI: 10.1016/j.actamat.2018.07.009.



19. Tong Y., Shuitcev A., Zheng Y. Recent development of TiNi?based shape memory alloys with high cycle stability and high transformation temperature // Advanced Engineering Materials. – 2020. – Vol. 22 (4). – DOI: 10.1002/adem.201900496.



20. Microstructural and thermomechanical comparison of Ni-rich and Ni-lean NiTi-20 at.% Hf high temperature shape memory alloy wires / A.W. Young, R.W. Wheeler, N.A. Ley, O. Benafan, v Young // Shape Memory and Superelasticity. – 2019. – Vol. 5 (4). – P. 397–406. – DOI: 10.1007/s40830-019-00255-0.



21. Belbasi M., Salehi M.T. Influence of chemical composition and melting process on hot rolling of NiTiHf shape memory alloy // Journal of Materials Engineering and Performance. – 2014. – Vol. 23 (7). – P. 2368–2372. – DOI: 10.1007/s11665-014-1006-8.



22. Effect of aging on the microstructure and shape memory effect of a hot-rolled NiTiHf alloy / M.M. Javadi, M. Belbasi, M.T. Salehi, M.R. Afshar // Journal of materials engineering and performance. – 2011. – Vol. 20 (4). – P. 618–622. – DOI: 10.1007/s11665-011-9885-4.



23. Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy / H.E. Karaca, S.M. Saghaian, G. Ded, H. Tobe, B. Basaran, H.J. Maier, R.D. Noebe, Y.I. Chumlyakov // Acta Materialia. – 2013. – Vol. 61 (19). – P. 7422–7431. – DOI: 10.1016/j.actamat.2013.08.048.



24. Coherency strains of H-phase precipitates and their influence on functional properties of nickel-titanium-hafnium shape memory alloys / B. Amin-Ahmadi, J.G. Pauza, A. Shamimi, T.W. Duerig, R.D. Noebe, A.P. Stebner // Scripta Materialia. – 2018. – Vol. 147. – P. 83–87. – DOI: 10.1016/j.scriptamat.2018.01.005.

Благодарности. Финансирование

Финансирование:

Исследование выполнено в рамках государственного задания ИМЕТ РАН № 075-00715-22-00.

Для цитирования:

Деформационная способность сплава с памятью формы TiNiHf при прокатке с импульсным током / В.В. Столяров, В.А. Андреев, Р.Д. Карелин, У.Х. Угурчиев, В.В. Черкасов, В.С. Комаров, В.С. Юсупов // Обработка металлов (технология, оборудование, инструменты). – 2022. – Т. 24, № 3. – С. 66–75. – DOI: 10.17212/1994-6309-2022-24.3-66-75

For citation:

Stolyarov V.V., Andreev V.A., Karelin R.D., Ugurchiev U.Kh., Cherkasov V.V., Komarov V.S., Yusupov V.S. Deformability of TiNiHf shape memory alloy under rolling with pulsed current. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2022, vol. 24, no. 3, pp. 66–75. DOI: 10.17212/1994-6309-2022-24.3-66-75. (In Russian).

Просмотров: 971