Обработка металлов

ОБРАБОТКА МЕТАЛЛОВ

ТЕХНОЛОГИЯ • ОБОРУДОВАНИЕ • ИНСТРУМЕНТЫ
Print ISSN: 1994-6309    Online ISSN: 2541-819X
English | Русский

Последний выпуск
Том 26, № 1 Январь - Март 2024

Оценка остаточных напряжений в кристаллических фазах высокоэнтропийных сплавов системы AlxCoCrFeNi

Том 24, № 4 Октябрь - Декабрь 2022
Авторы:

Иванов Иван Владимирович,
Юргин Александр Борисович,
Насенник Игорь Евгеньевич,
Купер Константин Эдуардович
DOI: http://dx.doi.org/10.17212/1994-6309-2022-24.4-181-191
Аннотация

Введение. Для всех пластически деформированных металлических сплавов характерно наличие дефектов кристаллической структуры, повышающих внутреннюю энергию системы. Эти дефекты также приводят к появлению остаточных напряжений, которые оказывают сложное влияние на свойства материала. Наиболее критичными с точки зрения эксплуатации изделия часто оказываются макронапряжения, которые могут приводить к его короблению, снижению коррозионной стойкости и изменению прочностных характеристик. Целью данной работы являлась оценка остаточных напряжений фазы с примитивной кубической решеткой, характерной для высокоэнтропийных сплавов Al0,6CoCrFeNi и AlCoCrFeNi. Методы исследования. Кристаллическое строение сплавов исследовалось с использованием метода рентгеноструктурного анализа. Эксперименты по рентгеноструктурному анализу проводили в Сибирском центре синхротронного и терагерцового излучения на ускорителе ВЭПП-4 (г. Новосибирск, ИЯФ СО РАН, линия 5-А «Рентгеновская микроскопия и томография»). Исследования с использованием синхротронного излучения были проведены в режиме «на просвет». Оценка остаточных макронапряжений кристаллических фаз сплавов Al0,3CoCrFeNi и Al0,6CoCrFeNi основывалась на анализе изменения формы дифракционных колец при изменении азимутального угла c. Материалы исследования. В данной работе объектами исследований являлись слитки высокоэнтропийных сплавов Al0,6CoCrFeNi и AlCoCrFeNi. Слитки были получены из чистых металлов методом аргонодуговой плавки с охлаждением на медной подложке. Для проведения дальнейших исследований из слитков вырезались цилиндрические образцы, которые подвергались пластической деформации по схеме одноосного сжатия. Результаты и обсуждение. Результаты анализа указывают на тот факт, что в сплаве Al0,6CoCrFeNi для данной фазы характерно наличие более высоких значений макронапряжений по сравнению со сплавом AlCoCrFeNi. Остаточная деформация решетки B2 фазы вдоль направления [100], входящей в состав сплава AlCoCrFeNi, составила 2,5 % при внешней нагрузке 2500 МПа, в то время как значение искажения решетки данной фазы для сплава Al0,6CoCrFeNi равно 5,5 % при аналогичных внешних условиях. Кроме того, пластическая деформация ВЭС Al0,6CoCrFeNi не привела к его разрушению. Это позволяет сделать вывод, что повышенная пластичность данного сплава связана не только с наличием фазы с гранецентрированной кубической решеткой, но и повышенной податливастью фазы с примитивной решеткой.


Ключевые слова: Высокоэнтропийные сплавы, AlxCoCrFeNi, пластическая деформация, остаточные напряжения, дифракция синхротронного рентгеновского излучения

Список литературы

1. Обзор исследований сплавов, разработанных на основе энтропийного подхода / З.Б. Батаева, А.А. Руктуев, И.В. Иванов, А.Б. Юргин, И.А. Батаев // Обработка металлов (технология, оборудование, инструменты). – 2021. – Т. 23, № 2. – С. 116–146. – DOI: 10.17212/1994-6309-2021-23.2-116-146.



2. Tensile and shear loading of four fcc high-entropy alloys: a first-principles study / X. Li, S. Schönecker, W. Li, L.K. Varga, D.L. Irving, L. Vitos // Physical Review B. – 2018. – Vol. 97 (9). – P. 1–9. – DOI: 10.1103/PhysRevB.97.094102.



3. Горбань В.Ф., Крапивка Н.А., Фирстов С.А. Высокоэнтропийные сплавы – электронная концентрация – фазовый состав – параметр решетки – свойства // Физика металлов и металловедение. – 2017. – Т. 118, № 10. – С. 1017–1029. – DOI: 10.7868/S0015323017080058.



4. Рогачев А.С. Структура, стабильность и свойства высокоэнтропийных сплавов // Физика металлов и металловедение. – 2020. – Т. 121, № 8. – С. 807–841. – DOI: 10.31857/S0015323020080094.



5. George E.P., Raabe D., Ritchie R.O. High-entropy alloys // Nature Reviews Materials. – 2019. – Vol. 4. – P. 515–534. – DOI: 10.1038/s41578-019-0121-4.



6. Sharma P., Dwivedi V.K., Dwivedi S.P. Development of high entropy alloys: a review // Materials Today: Proceedings. – 2021. – Vol. 43. – P. 502–509. – DOI: 10.1016/j.matpr.2020.12.023.



7. Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study / W.M. Choi, Y.H. Jo, S.S. Sohn, S. Lee, B.J. Lee // Npj Computational Materials. – 2018. – Vol. 4 (1). – P. 1–9. – DOI: 10.1038/s41524-017-0060-9.



8. Strength can be controlled by edge dislocations in refractory high-entropy alloys / C. Lee, F. Maresca, R. Feng, Y. Chou, T. Ungar, M. Widom, K. An, J.D. Poplawsky, Y.C. Chou, P.K. Liaw, W.A. Curtin // Nature Communications. – 2021. – Vol. 12 (1). – P. 1–8. – DOI: 10.1038/s41467-021-25807-w.



9. Ikeda Y., Grabowski B., Körmann F. Ab initio phase stabilities and mechanical properties of multicomponent alloys: a comprehensive review for high entropy alloys and compositionally complex alloys // Materials Characterization. – 2019. – Vol. 147. – P. 464–511. – DOI: 10.1016/j.matchar.2018.06.019.



10. Effect of Sc and Y addition on the microstructure and properties of HCP-structured high-entropy alloys / T. Huang, H. Jiang, Y. Lu, T. Wang, T. Li // Applied Physics A: Materials Science and Processing. – 2019. – Vol. 125 (3). – P. 1–5. – DOI: 10.1007/s00339-019-2484-1.



11. Predictive multiphase evolution in Al-containing high-entropy alloys / L.J. Santodonato, P.K. Liaw, R.R. Unocic, H. Bei, J.R. Morris // Nature Communications. – 2018. – Vol. 9 (1). – P. 1–10. – DOI: 10.1038/s41467-018-06757-2.



12. Wang W.R., Wang W.L., Yeh J.W. Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures // Journal of Alloys and Compounds. – 2014. – Vol. 589. – P. 143–152. – DOI: 10.1016/j.jallcom.2013.11.084.



13. Memon B.A., Yao H. High-pressure induced phase transitions in high-entropy alloys: a review // Entropy. – 2019. – Vol. 21 (3). – P. 88–92. – DOI: 10.3390/e21030239.



14. Applications of high-pressure technology for high-entropy alloys: a review / W. Dong, Z. Zhou, M. Zhang, Y. Ma, P. Yu, P.K. Liaw, G. Li // Metals. – 2019. – Vol. 9 (8). – P. 2–16. – DOI: 10.3390/met9080867.



15. Microstructure and mechanical properties of AlCoCrFeNi high entropy alloys produced by spark plasma sintering / P.F. Zhou, D.H. Xiao, Z. Wu, M. Song // Materials Research Express. – 2019. – Vol. 6 (8). – DOI: 10.1088/2053-1591/ab2517.



16. Структура высокоэнтропийного сплава AlCoCrFeNi после деформации по схеме одноосного сжатия и термической обработки / И.В. Иванов, К.И. Эмурлаев, А.А. Руктуев, А.Г. Тюрин, И.А. Батаев // Известия вузов. Черная металлургия. – 2021. – Т. 64, № 10. – С. 736–746. – DOI: 10.17073/0368-0797-2021-10-736-746.



17. Feuerbacher M. Dislocations and deformation microstructure in a B2-ordered Al28Co20Cr11Fe15Ni26 high-entropy alloy // Scientific Reports. – 2016. – Vol. 6. – P. 1–9. – DOI: 10.1038/srep29700.



18. The BCC/B2 morphologies in AlxNiCoFeCr high-entropy alloys / Y. Ma, B. Jiang, C. Li, Q. Wang, C. Dong, P.K. Liaw, F. Xu, L. Sun // Metals. – 2017. – Vol. 7 (2). – DOI: 10.3390/met7020057.



19. The effects of annealing at different temperatures on microstructure and mechanical properties of cold-rolled Al0.3CoCrFeNi high-entropy alloy / Z. Zhu, T. Yang, R. Shi, X. Quan, J. Zhang, R. Qiu, B. Song, Q. Liu // Metals. – 2021. – Vol. 11 (6). – DOI: 10.3390/met11060940.



20. Русаков А.А. Рентгенография металлов. – М.: Атомиздат, 1977. – 479 с.



21. Application of different diffraction peak profile analysis methods to study the structure evolution of cold-rolled hexagonal α-titanium / I.V. Ivanov, D.V. Lazurenko, A. Stark, F. Pyczak, A. Thömmes, I.A. Bataev // Metals and Materials International. – 2020. – Vol. 26 (1). – P. 83–93. – DOI: 10.1007/s12540-019-00309-z.

Благодарности. Финансирование

Исследование выполнено при финансовой поддержке Российского научного фонда в рамках проекта № 20-73-10215 «In-situ исследование эволюции дислокационной структуры пластически деформированных высокоэнтропийных сплавов в условиях действия высоких давлений и температур с применением синхротронного излучения». Исследования выполнены на оборудовании ЦКП "Структура, механические и физические свойства материалов".

Для цитирования:

Оценка остаточных напряжений в кристаллических фазах высокоэнтропийных сплавов системы AlxCoCrFeNi / И.В. Иванов, А.Б. Юргин, И.Е. Насенник, К.Э. Купер // Обработка металлов (технология, оборудование, инструменты). – 2022. – Т. 24, № 4. – С. 181–191. – DOI: 10.17212/1994-6309-2022-24.4-181-191.

For citation:

Ivanov I.V., Yurgin A.B., Nasennik I.E. Kuper K.E. Residual stress estimation in crystalline phases of high-entropy alloys of the AlxCoCrFeNi system. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2022, vol. 24, no. 4, pp. 181–191. DOI: 10.17212/1994-6309-2022-24.4-181-191. (In Russian).

Просмотров: 1013