Obrabotka metallov

OBRABOTKA METALLOV

METAL WORKING AND MATERIAL SCIENCE
Print ISSN: 1994-6309    Online ISSN: 2541-819X
English | Русский

Recent issue
Vol. 27, No 3 July – September 2025

Analysis of the stress-strain state of the material under high-energy heating by high frequency currents

Issue No 3 (64) July – September 2014
Authors:

Skeeba V.Yu.,
Pushnin V.N.,
Erohin I.A.,
Kornev D.Yu.
Abstract
Purpose: To increase the performance properties of the machine parts, part surface layer modification methods are becoming more and more popular. They use concentrated energy sources to achieve high heating rates of around 104 to 105 oC/s. Therefore, it is rather difficult to experimentally determine the values of the heat cycle parameters that are needed to predict the required size and character of the residual stress distribution and deformation. The task of this paper is to numerically model the stress-strain state of the material under high energy heating by high-frequency currents (HEH HFC). Methods: The finite element model was created in the ANSYS and SYSWELD software complexes that use numerical methods to solve differential equations of transient heat conduction (Fourier equation), carbon diffusion (Fick’s second law) and elastoplastic material behavior. The modeling results were verified by means of natural experiments using optical and scanning microscopy, mechanical and X-ray methods to detect residual stresses. Results and Discussion: It was established that in the observed change range of the HEH HFC modes, the level of residual compression stresses on surfaces of parts may achieve the values of -500 to -1000 MPa. It was theoretically proven and experimentally confirmed that the size of the transition layer should constitute 25 to 33 % of the hardened layer depth, which shifts the peak of the tension stresses to the deeper layers of the material while decreasing the compression stresses on the surface by 6 to 10 % and excluding the possibility of heat treatment crack formation.
Keywords: high-energy heating, high-frequency hardening, FEM, stress-strain state, residual stresses, surface layer.

References
1. Jianbin Luo, Yonggang Meng, Tianmin Shao, Qian Zhao. Advanced Tribology: Proceedings of CIST2008 & ITS-IFToMM2008. Beijing, Tsinghua University Press, Berlin, Heidelberg, Springer-Verlag, 2009. 1056 p.

2. Davis J.R. Surface Hardening of Steels: Understanding the Basics. Ohio, Materials Park, ASM International, 2002. 364 p.

3. Ion J.C. Laser processing of engineering materials: Principles, procedure and industrial application. Burlington, Elsevier Butterworth-Heinemann, 2005. 576 p.

4. Béjar M.A., Henríquez R. Surface hardening of steel by plasma-electrolysis boronizing. Materials and Design, 2009, vol. 30, iss. 5, pp. 1726-1728. doi: 10.1016/j.matdes.2008.07.006

5. Abashkin V.V., Gorshkov O.A., Ilyin A.A., Lovtsov A.S., Rizakhanov R.N. Multipass surface hardening of steel samples with inclined surfaces by concentrated electron beam in the air of atmosphere pressure. High Temperature Material Processes: an International Quarterly of High-Technology Plasma Processes, 2004, vol. 8, iss. 3, pp. 427-432. doi: 10.1615/HighTempMatProc.v8.i3.80

6. Songa R.G., Zhanga K., Chena G.N. Electron beam surface treatment. Pt. 1: Surface hardening of AISI D3 tool steel. Vacuum, 2003, vol. 69, iss. 4, pp. 513-516. doi: 10.1016/S0042-207X(02)00583-3

7. Engelko V., Yatsenko B., Mueller G., Bluhm H. Pulsed electron beam facility (GESA) for surface treatment of materials. Vacuum, 2001, vol. 62, iss. 2-3, pp. 211-216. doi: 10.1016/S0042-207X(00)00446-2

8. Golkovskii M.G. Hardening and cladding of a relativistic electron beam outside the vacuum. Technological capabilities of the method. Saarbrucken, LAPLAMBERT Academic Publ., 2013. 317 p.

9. Bataev I.A., Golkovskii M.G., Bataev A.A., Losinskaya A.A., Popelyukh A.I., Drobyaz E.A. Surface hardening of steels with carbon by non-vacuum electron-beam processing. Surface and Coatings Technology, 2014, vol. 242, pp. 164-169. doi: 10.1016/j.surfcoat.2014.01.038

10. Rudnev V.I., Loveless D. 12.15 – Induction Hardening: Technology, Process Design, and Computer Modeling. Comprehensive Materials Processing, 2014, vol. 12: Thermal Engineering of Steel Alloy Systems, pp. 489-580. doi: 10.1016/B978-0-08-096532-1.01217-6.

11. Ivantsivskii V.V., Bataev V.A. Uprochnenie poverkhnostnykh sloev detalei mashin s ispol'zovaniem vysokoenergeticheskogo nagreva tokami vysokoi chastoty [Surface hardening of machine parts by using high-energy heating by high frequency currents]. Polzunovskii vestnik – Polzunov Bulletin, 2005, no. 2-2, pp. 104-112.

12. Kidin I.N. Fizicheskie osnovy elektrotermicheskoi obrabotki materialov i splavov [Physical basis of electrothermal treatment of materials and alloys]. Moscow, Metallurgiya Publ., 1969. 376 p.

13. Golovin G.F., Zamyatnin M.M. Vysokochastotnaya termicheskaya obrabotka. Voprosy metallovedeniya i tekhnologii [High-frequency heat treatment. Problems of Metallurgy and Technology]. Leningrad, Mashinostroenie Publ., 1990. 239 p.

14. Ivantsivskii V.V., Bataev V.A. Svyaz' parametrov termicheskikh tsiklov, realizuemykh v poverkhnostnykh sloyakh detalei mashin, s glubinoi uprochneniya pri vozdeistvii ob"emnykh kontsentrirovannykh istochnikov nagreva [Communication parameters of thermal cycles, implemented in the surface layers of machine parts, with the depth of hardening under the influence of volume concentrated heat sources]. Izvestiya vysshikh uchebnykh zavedenii. Chernaya metallurgiya – Steel in Translation, 2004, no. 10, pp. 30-34 (in Russian).

15. Ivantsivskii V.V., Skeeba V.Yu., Stepanova N.P. Naznachenie rezhimov poverkhnostnoi zakalki s ispol'zovaniem kontsentrirovannykh istochnikov nagreva [Assignment mode of surface hardening, which is carried out by using a concentrated heat source]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) – Metal Working and Material Science, 2005, no. 3, pp. 22-24.

16. Amit Kohli, Hari Singh. Optimization of processing parameters in induction hardening using response surface methodology. Sadhana, 2011, vol. 36, iss. 2, pp. 141-152. doi: 10.1007/s12046-011-0020-x

17. Ivantsivskii V.V., Skeeba V.Yu. Povyshenie poverkhnostnoi mikrotverdosti stali pri integratsii poverkhnostno-termicheskoi i finishnoi mekhanicheskoi obrabotok [Increased surface microhardness of steel in the integration of surface-thermal and mechanical finishing treatments]. Nauchnyi vestnik NGTU – Science Bulletin of Novosibirsk State Technical University, 2006, no. 3, pp. 187-192.

18. Ivantsivskii V.V., Skeeba V.Yu., Zub N.P. Metodika naznacheniya rezhimov obrabotki, obespechivayushchikh ratsional'noe raspredelenie ostatochnykh napryazhenii pri poverkhnostnoi zakalke VEN TVCh [Method of determining processing modes, ensuring the rational distribution of residual stresses in surface hardening HEH HFC]. Nauchnyi vestnik NGTU – Science Bulletin of Novosibirsk State Technical University, 2008, no. 3, pp. 83-95.

19. Dominique Couparda, Thierry Palin-Luca, Philippe Bristielb, Vincent Jic, Christian Dumasd Residual stresses in surface induction hardening of steels. Comparison between experiment and simulation. Materials Science and Engineering: A, 2008, vol. 487, iss. 1-2, pp. 328-339. doi: 10.1016/j.msea.2007.10.047

20. Totten G.E., Howes M., Inoue T. Handbook of Residual Stress and Deformation of Steel. Ohio, ASM International, Materials Park, 2002. 499 p.

21. ASM Handbook. Vol. 9. Metallography and microstructures. Prepared under the direction of the ASM International Handbook Committee, vol. ed. G.F. Vander Voort. Ohio, Materials Park, ASM International. 2004. 1184 p.

22. Sharpe W.N., ed. Springer Handbook of Experimental Solid Mechanics. Leipzig-New York, Springer Science and Business Media, 2008. 1098 p.

23. Nikulina A.A., Skeeba V.Yu., Kornienko E.E., Mironov E.N. Modelirovanie protsessov strukturoobrazovaniya pri formirovanii svarnogo soedineniya iz raznorodnykh stalei [Simulation of structure formation during welding of heterogeneous steels]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) – Metal Working and Material Science, 2011, no. 4 (53), pp. 54-61.

24. Slukhotskii A.E., Ryskin S.E. Induktory dlya induktsionnogo nagreva [Inductors for Induction Heating]. Leningrad, Energiya Publ., 1974. 264 p.

25. Ivantsivskii V.V. [Communication processing modes with the thermal processes in the material at the integration of surface thermal and mechanical finishing treatments]. Trudy Vserossiiskoi nauchno-tekhnicheskoi konferentsii “Sovremennaya elektrotekhnologiya v promyshlennosti Rossii” [Proceedings of the All-Russian Scientific and Technical Conference "Modern electrotechnology industry in Russia"]. Tula, 2003, pp. 249-258.

26. Lifshits Ya.L., Kraposhin V.S., Linetskii Ya.L. Fizicheskie svoistva metallov i splavov: Spravochnik [Physical properties of metals and alloys: Directory]. Moscow, Metallurgiya Publ., 1980. 320 p.

27. Okhotin A.S. Teploprovodnost' tverdykh tel: Spravochnik [Thermal conductivity of solids: Directory]. Moscow, Energoatomizdat Publ., 1984. 320 p.

28. Sorokin V.G., Gervas'ev M.A., eds. Stali i splavy. Marochnik: Spravochnoe izdanie [Grade steels and alloys. Reference Edition]. Moscow, Intermet Engineering Publ., 2001. 608 p.

29. Denis S., Sjöström S., Simon A. Coupled temperature, stress, phase transformation calculation model numerical illustration of the internal stress evolution during cooling of a eutectoid steel cylinder. Metallurgical Transactions: A, 1987, vol. 18, iss. 7, pp. 1203-1212. doi: 10.1007/BF02647190

30. Hildenwall B., Ericsson T. Prediction of Residual Stresses in Case-hardening Steel. Hardenability Concepts with Application to Steel, D.V. Doane and J.S. Kirkaldy, eds. Warrendale, AIME, 1978, pp. 579-605.

31. Prus A.A., Ermolaev B.I. Metally i splavy: Spravochnye dannye o fiziko-mekhanicheskikh svoistvakh pri razlichnykh temperaturakh i usloviyakh nagruzheniya [Metals and alloys. Reference data on the physical and mechanical properties at different temperatures and loading conditions]. Moscow, TsNII Publ., 1975. 583 p.

32. Zinov'ev V.E. Teplofizicheskie svoistva metallov pri vysokikh temperaturakh: Spravochnik [Thermophysical properties of metals at high temperatures: Directory]. Moscow, Metallurgiya Publ., 1989. 383 p.

33. Skeeba V.Yu. Povyshenie effektivnosti tekhnologicheskogo protsessa obrabotki detalei mashin pri integratsii abrazivnogo shlifovaniya i poverkhnostnoi zakalki TVCh. Diss. kand. tekhn. nauk [Improving the efficiency of the technological processing machinery parts with the integration of abrasive grinding and surface hardening currents by high frequency currents. Dr. tech. sci. diss.]. Novosibirsk, 2008. 257 p.

34. Fortunier R. Leblond J.B., Bergheau J.M. A Numerical Model for Multiple Phase Transformations in Steels during Thermal Processes. Journal of Shanghai Jiaotong University, 2000, iss. 1, pp. 213-220.

35. Sjöström S. The Calculation of Quench Stresses in Steel. Ph.D. Diss. Linköping University, Linköping Studios in Science and Technology, Division of Solid Mechanics and Strength of Materials, Department of Mechanical Engineering. Linköping, Sweden, 1982, no. 84. 126 p.

36. Ivantsivskii V.V. Upravlenie strukturnym i napryazhennym sostoyaniem poverkhnostnykh sloev detalei mashin pri ikh uprochnenii s ispol'zovaniem kontsentrirovannykh istochnikov nagreva i finishnogo shlifovaniya. Diss. dokt. tekhn. nauk [Control of structural and stress state of the surface layers of machine parts during their hardening using concentrated sources of heat and abrasive finishing. Dr. eng. sci. diss.]. Novosibirsk, 2012. 425 p.
Views: 3860