Введение. В статье представлен всесторонний обзор методов производства, материалов, свойств и проблем, связанных с пенометаллами; особое внимание уделяется пенометаллам на основе алюминия и титана. Пористые пенометаллы вызывают интерес благодаря уникальному сочетанию низкой плотности, высокой жесткости и высокой способности поглощать энергию. Металлическая пена известна своим уникальным сочетанием физических и механических свойств, включая повышенную жесткость, удельную прочность при высоких температурах, легкий вес и эффективное поглощение энергии при относительно низкой площадке текучести. Пенометалл широко используется в автомобильной, судостроительной и космической промышленности. Он имеет высокую пористость, низкую относительную плотность и высокую прочность, что повышает эксплуатационные характеристики изделия. В аэрокосмической и автомобильной промышленности требуется материал с высоким соотношением прочности и удельного веса. Методы. Для удовлетворения этой потребности было разработано множество методов производства металлической пены, таких как метод расплавления, метод осаждения и метод порошковой металлургии. Метод литья широко используется для производства металлической пены по сравнению с другими методами. Результаты и обсуждение. При производстве пенометаллов на основе алюминиевого сплава обычно используется метод прямого вспенивания расплавов. Гидрид титана (TiH2) был популярным пенообразующим веществом, но высокая скорость его разложения и ограничения по стоимости привели к разработке альтернативных пенообразователей, таких как CaCO3 (карбонат кальция). Титановую пену часто изготавливают, используя наполнитель для формирования пор. Этот метод включает смешивание титанового порошка с наполнителем, формирование заготовки, а затем спекание для удаления наполнителя и создания пористой структуры, поскольку метод, основанный на использовании наполнителя для формирования пор, позволяет точно контролировать свойства пены, такие как размер пор, пористость и относительную плотность. Результаты также показывают, что пористость пенометаллов может варьироваться от 50 до 95 %, что совпадает с данными из литературы. Пористые структуры могут включать в себя открытые и закрытые поры, а также их комбинацию, из-за чего различные участки материала обладают разными механическими и термическими свойствами. В различных литературных источниках также отмечается, что относительная плотность, которая представляет собой отношение плотности пенометалла к плотности порошкового материала, варьируется от 0,02 до 0,44 в зависимости от используемого метода производства.
1. Banhart J. Light-metal foams – History of innovation and technological challenges // Advanced Engineering Materials. – 2013. – Vol. 15 (3). – P. 82–111. – DOI: 10.1002/adem.201200217.
2. Sinha N., Srivastava V.C., Sahoo K.L. Processing and application of aluminium foams // Special Metal Casting and Forming Processes (CAFP-2008). – Jamshedpur, 2008. – P. 54–63.
3. Banhart J., Baumeister J. Production methods for metallic foams // Materials Research Society Symposium – Proceedings. – 1998. – Vol. 521. – P. 121–132. – DOI: 10.1557/proc-521-121.
4. Kulshreshtha A., Dhakad S.K. Preparation of metal foam by different methods: A review // Materials Today: Proceedings. – 2020. – Vol. 26, pt. 2. – P. 1784–1790. – DOI: 10.1016/j.matpr.2020.02.375.
5. Singh S., Bhatnagar N. A survey of fabrication and application of metallic foams (1925–2017) // Journal of Porous Materials. – 2018. – Vol. 25 (2). – P. 537–554. – DOI: 10.1007/s10934-017-0467-1.
6. Karuppasamy R., Barik D. Production methods of aluminium foam: A brief review // Materials Today: Proceedings. – 2021. – Vol. 37, pt. 2. – P. 1584–1587. – DOI: 10.1016/j.matpr.2020.07.161.
7. Yuan J.Y., Li Y.X. Effect of orifice geometry on bubble formation in melt gas injection to prepare aluminum foams // Science China Technological Sciences. – 2015. – Vol. 58 (1). – P. 64–74. – DOI: 10.1007/s11431-014-5669-z.
8. The cell size reduction of aluminum foam with dynamic gas injection based on the improved foamable melt / N. Wang, X. Chen, Y. Li, Z. Liu, Z. Zhao, Y. Cheng, Y. Liu, H. Zhang // Colloids and Surfaces A: Physicochemical and Engineering Aspects. – 2017. – Vol. 527. – P. 123–131. – DOI: 10.1016/j.colsurfa.2017.05.023.
9. Goyal B., Pandey A. Critical review on porous material manufacturing techniques, properties & their applications // Materials Today: Proceedings. – 2021. – Vol. 46, pt. 17. – P. 8196–8203. – DOI: 10.1016/j.matpr.2021.03.163.
10. Porosity control in aluminium foams using different additives / G. Avinash, V. Harika, C. Sandeepika, R. Kumar, N. Gupta // Materials Today: Proceedings. – 2019. – Vol. 18. – P. 1054–1057. – DOI: 10.1016/j.matpr.2019.06.563.
11. Jaafar A.H., Al-Ethari H., Farhan K. Modelling and optimization of manufacturing calcium carbonate-based aluminum foam // Materials Research Express. – 2019. – Vol. 6 (8). – DOI: 10.1088/2053-1591/ab2602.
12. Ghaleh M.H., Ehsani N., Baharvandi H.R. High-porosity closed-cell aluminum foams produced by melting method without stabilizer particles // International Journal of Metalcasting. – 2021. – Vol. 15 (3). – P. 899–905. – DOI: 10.1007/s40962-020-00528-w.
13. Heidari Ghaleh M., Ehsani N., Baharvandi H.R. Compressive properties of A356 closed-cell aluminum foamed with a CaCO3 foaming agent without stabilizer particles // Metals and Materials International. – 2020. – Vol. 27 (10). – P. 3856–3861. – DOI: 10.1007/s12540-020-00807-5.
14. Investigation on the effect of aluminium foam made of A413 aluminium alloy through stir casting and infiltration techniques / R. Karuppasamy, D. Barik, N.M. Sivaram, M.S. Dennison // International Journal of Materials Engineering Innovation. – 2020. – Vol. 11 (1). – P. 34–50. – DOI: 10.1504/IJMATEI.2020.104790.
15. Yang C.C., Nakae H. Foaming characteristics control during production of aluminum alloy foam // Journal of Alloys and Compounds. – 2000. – Vol. 313 (1–2). – P. 188–191. – DOI: 10.1016/S0925-8388(00)01136-1.
16. Comparison of aluminium foams prepared by different methods using X-ray tomography / N. Wang, E. Maire, Y. Cheng, Y. Amani, Y. Li, J. Adrien, X. Chen // Materials Characterization. – 2018. – Vol. 138. – P. 296–307. – DOI: 10.1016/j.matchar.2018.02.015.
17. Shapovalov V. Prospective applications of gas-eutectic porous materials (gasars) in USA // Materials Science Forum. – 2007. – Vol. 539–543. – P. 1183–1187. – DOI: 10.4028/www.scientific.net/msf.539-543.1183.
18. Liu Y., Li Y., Wan J. Directional solidification of metal-gas eutectic and fabrication of regular porous metals // Frontiers of Mechanical Engineering in China. – 2007. – Vol. 2 (2). – P. 180–183. – DOI: 10.1007/s11465-007-0030-x.
19. Banhart J. Manufacturing Routes for very low specific // JOM. – 2000. – Vol. 52 (12). – P. 22–27.
20. Güner A., Ar?kan M.M., Nebioglu M. New approaches to aluminum integral foam production with casting methods // Metals. – 2015. – Vol. 5 (3). – P. 1553–1565. – DOI: 10.3390/met5031553.
21. Gama N., Ferreira A., Barros-Timmons A. 3D printed thermoplastic polyurethane filled with polyurethane foams residues // Journal of Polymers and the Environment. – 2020. – Vol. 28 (5). – P. 1560–1570. – DOI: 10.1007/s10924-020-01705-y.
22. Sound absorption of open celled aluminium foam fabricated by investment casting method / X.F. Wang, X.F. Wang, X. Wei, F.S. Han, X.L. Wang // Materials Science and Technology. – 2011. – Vol. 27 (4). – P. 800–804. – DOI: 10.1179/026708309X12506934374047.
23. Lichy P., Bednarova V., Elbel T. Casting routes for porous metals production // Archives of Foundry Engineering. – 2012. – Vol. 12 (1). – P. 71–74. – DOI: 10.2478/v10266-012-0014-0.
24. Investigation of a template-based process chain for investment casting of open-cell metal foams / P. Kubelka, F. Körte, J. Heimann, X. Xiong, N. Jost // Advanced Engineering Materials. – 2022. – Vol. 24 (1). – DOI: 10.1002/adem.202100608.
25. Investment casting and mechanical properties of open-cell steel foams / J. Fromert, T.G. Lott, A.M. Matz, N. Jost // Advanced Engineering Materials. – 2019. – Vol. 21 (6). – P. 1–7. – DOI: 10.1002/adem.201900396.
26. Anglani A., Pacella M. Logistic regression and response surface design for statistical modeling of investment casting process in metal foam production // Procedia CIRP. – 2018. – Vol. 67. – P. 504–509. – DOI: 10.1016/j.procir.2017.12.252.
27. Kitazono K., Sato E., Kuribayashi K. Novel manufacturing process of closed-cell aluminum foam by accumulative roll-bonding // Scripta Materialia. – 2004. – Vol. 50 (4). – P. 495–498. – DOI: 10.1016/j.scriptamat.2003.10.035.
28. Asavavisithchai S., Kennedy A.R. The effect of Mg addition on the stability of Al-Al2O3 foams made by a powder metallurgy route // Scripta Materialia. – 2006. – Vol. 54 (7). – P. 1331–1334. – DOI: 10.1016/j.scriptamat.2005.12.015.
29. Manufacturing of Al-Mg-Si alloy foam using calcium carbonate as foaming agent / L.E.G. Cambronero, J.M. Ruiz-Roman, F.A. Corpas, J.M. Ruiz Prieto // Journal of Materials Processing Technology. – 2009. – Vol. 209 (4). – P. 1803–1809. – DOI: 10.1016/j.jmatprotec.2008.04.032.
30. Foaming agents for powder metallurgy production of aluminum foam / T. Koizumi, K. Kido, K. Kita, K. Mikado, S. Gnyloskurenko, T. Nakamura // Materials Transactions. – 2011. – Vol. 52 (4). – P. 728–733. – DOI: 10.2320/matertrans.M2010401.
31. Preparation principle and compression properties of cellular Mg–Al–Zn alloy foams fabricated by the gas release reaction powder metallurgy approach / D. Yang, S. Guo, J. Chen, C. Qiu, S.-O. Agbedor, A. Ma, J. Jiang, L. Wang // Journal of Alloys and Compounds. – 2021. – Vol. 857. – P. 158112. – DOI: 10.1016/j.jallcom.2020.158112.
32. Fabrication of aluminium foams from powder by hot extrusion and foaming / M. Shiomi, S. Imagama, K. Osakada, R. Matsumoto // Journal of Materials Processing Technology. – 2010. – Vol. 210 (9). – P. 1203–1208. – DOI: 10.1016/j.jmatprotec.2010.03.006.
33. Yu C.J. Metal foaming by a powder metallurgy method: Production, properties and applications // Materials Research Innovations. – 1998. – Vol. 2 (3). – P. 181–188. – DOI: 10.1007/s100190050082.
34. Kennedy A. Porous metals and metal foams made from powders // Powder Metallurgy / ed. by K. Kondoh. – InTech, 2012. – DOI: 10.5772/33060.
35. Influence of processing parameters on aluminium foam produced by space holder technique / R. Surace, L.A.C. de Filippis, A.D. Ludovico, G. Boghetich // Materials and Design. – 2009. – Vol. 30 (6). – P. 1878–1885. – DOI: 10.1016/j.matdes.2008.09.027.
36. Powder metallurgy with space holder for porous titanium implants: A review / A. Rodriguez-Contreras, M. Punset, J.A. Calero, F.J. Gil, E. Ruperez, J.M. Manero // Journal of Materials Science and Technology. – 2021. – Vol. 76. – P. 129–149. – DOI: 10.1016/j.jmst.2020.11.005.
37. Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route / N. Jha, D.P. Mondal, J. Dutta Majumdar, A. Badkul, A.K. Jha, A.K. Khare // Materials and Design. – 2013. – Vol. 47. – P. 810–819. – DOI: 10.1016/j.matdes.2013.01.005.
38. Sazegaran H., Feizi A., Hojati M. Effect of Cr contents on the porosity percentage, microstructure, and mechanical properties of steel foams manufactured by powder metallurgy // Transactions of the Indian Institute of Metals. – 2019. – Vol. 72 (10). – P. 2819–2826. – DOI: 10.1007/s12666-019-01758-1.
39. Microstructure and mechanical properties of metal foams fabricated via melt foaming and powder metallurgy technique: A review / B. Parveez, N.A. Jamal, H. Anuar, Y. Ahmad, A. Aabid, M. Baig // Materials. – 2022. – Vol. 15. – DOI: 10.3390/ma15155302.
40. Preliminary development of porous aluminum via powder metallurgy technique / N.A. Jamal, O. Maizatul, H. Anuar, F. Yusof, Y. Ahmad Nor, K. Khalid, M.N. Zakaria // Materialwissenschaft und Werkstofftechnik. – 2018. – Vol. 49 (4). – P. 460–466. – DOI: 10.1002/mawe.201700269.
Шарма Ш.С., Йоши А., Раджпут Й.С. Систематический обзор технологий производства металлической пены // Обработка металлов (технология, оборудование, инструменты). – 2023. – Т. 25, № 4. – С. 22–35. – DOI: 10.17212/1994-6309-2023-25.4-22-35.
Sharma S.S., Joshi A., Rajpoot Y.S. A systematic review of processing techniques for cellular metallic foam production. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2023, vol. 25, no. 4, pp. 22–35. DOI:10.17212/1994-6309-2023-25.4-22-35. (In Russian)