Обработка металлов

ОБРАБОТКА МЕТАЛЛОВ

ТЕХНОЛОГИЯ • ОБОРУДОВАНИЕ • ИНСТРУМЕНТЫ
Print ISSN: 1994-6309    Online ISSN: 2541-819X
English | Русский

Последний выпуск
Том 26, № 1 Январь - Март 2024

Исследование электроэрозионной обработки криогенно обработанных бериллиево-медных сплавов (BeCu)

Том 26, № 1 Январь - Март 2024
Авторы:

Савант Дхрув,
Булах Руджута,
Джатти Виджайкумар,
Чинчаникар Сатиш,
Мишра Акшанш,
Сефене Эйоб Месселе
DOI: http://dx.doi.org/10.17212/1994-6309-2024-26.1-175-193
Аннотация

Введение. В современном производственном мире отрасли промышленности должны внедрять технологические достижения для прецизионной обработки труднообрабатываемых металлов, особенно для бериллиево-медных сплавов (BeCu). Электроэрозионная обработка сплавов доказала свою жизнеспособность. Цель работы. Обзор литературы показал, что исследование электроэрозионной обработки BeCu-сплавов все еще находится в зачаточном состоянии. Кроме того, криогенная обработка заготовок и электродов при электроэрозионной обработке не привлекла особого внимания исследователей. Более того, в исследованиях очень мало внимания уделено влиянию магнитной индукции на целостность поверхности и производительность во время электроэрозионной обработки. Методы исследования. В данной статье описывается использование электролитической меди с различными значениями тока в межэлектродном зазоре, периодами импульса и величиной магнитной индукции при электроэрозионной обработке BeCu-сплавов. В статье рассматривается, как криогенная обработка заготовки и инструмента, время импульса, ток в межэлектродном зазоре и величина магнитной индукции влияют на скорость съема материала, толщину белого слоя и образование поверхностных трещин. Результаты и обсуждение. Комбинация криогенно обработанной детали из BeCu-сплава и необработанного медного электрода имела самую высокую скорость съема материала среди всех комбинаций деталей и инструментов, использованных в этом исследовании. Время импульса и величина магнитной индукции мало влияли на скорость съема материала, тогда как наибольший эффект имел ток в межэлектродном зазоре. Максимально достигнутая скорость съема материала составила 11,807 мм3/мин. При высокой скорости съема материала наблюдаемая толщина белого слоя на горизонтальной поверхности колебалась в диапазоне 12,92–14,24 мкм. Таким же образом были определены максимальное и минимальное значения для вертикальной поверхности, равные 15,58 и 11,67 мкм соответственно. По данным сканирующей электронной микроскопии толщина слоя составляла менее 20 мкм, а в образцах с низкой, средней и высокой скоростью съема материала наблюдались едва заметные поверхностные трещины. Очевидно, что из-за криогенной обработки заготовки и внешнего магнитного поля наблюдалось незначительное растрескивание поверхности и образование белого слоя.


Ключевые слова: Бериллиевая медь, криогенная обработка, скорость съема материала, толщина белого слоя, образование поверхностных трещин

Список литературы

1. Machining parameter optimization and experimental investigations of nano-graphene mixed electrical discharge machining of nitinol shape memory alloy / J. Vora, S. Khanna, R. Chaudhari, V.K. Patel, S. Paneliya, D.Y. Pimenov, K. Giasin, C. Prakash // Journal of Materials Research and Technology. – 2022. – Vol. 19. – P. 653–668. – DOI: 10.1016/j.jmrt.2022.05.076.



2. Ak?nc?oglu S. Taguchi optimization of multiple performance characteristics in the electrical discharge machining of the TiGr2 // Facta Universitatis. Series: Mechanical Engineering. – 2022. – Vol. 20 (2). – P. 237–253. – DOI: 10.22190/FUME201230028A.



3. Optimization of hydroxyapatite powder mixed electric discharge machining process to improve modified surface features of 316L stainless steel / M. Danish, M. Al-Amin, A.M. Abdul-Rani, S. Rubaiee, A. Ahmed, F.T. Zohura, R. Ahmed, M.B. Yildirim // Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. – 2023. – Vol. 237 (3). – P. 881–895. – DOI: 10.1177/09544089221111584.



4. Kam M., Ipekçi A., Argun K. Experimental investigation and optimization of machining parameters of deep cryogenically treated and tempered steels in electrical discharge machining process // Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. – 2022. – Vol. 236 (5). – P. 1927–1935. – DOI: 10.1177/09544089221078133.



5. Study of various optimization techniques for electric discharge machining and electrochemical machining processes / N. Gautam, A. Goyal, S.S. Sharma, A.D. Oza, R. Kumar // Materials Today: Proceedings. – 2022. – Vol. 57. – P.615–621. – DOI: 10.1016/j.matpr.2022.02.005.



6. Shukla S.K., Priyadarshini A. Application of machine learning techniques for multi objective optimization of response variables in wire cut electro discharge machining operation // Materials Science Forum. – 2019. – Vol. 969. – P. 800–806. – DOI: 10.4028/www.scientific.net/MSF.969.800.



7. Kumar Vin., Kumar Vik., Jangra K.K. An experimental analysis and optimization of machining rate and surface characteristics in WEDM of Monel-400 using RSM and desirability approach // Journal of Industrial Engineering International. – 2015. – Vol. 11 (3). – P. 297–307. – DOI: 10.1007/s40092-015-0103-0.



8. Kumar S.V., Kumar M.P. Optimization of cryogenic cooled EDM process parameters using grey relational analysis // Journal of Mechanical Science and Technology. – 2014. – Vol. 28. – P. 3777–3784. – DOI: 10.1007/s12206-014-0840-9.



9. Gangele A., Mishra A. Surface roughness optimization during machining of niti shape memory alloy by EDM through Taguchi’s technique // Materials Today: Proceedings. – 2020. – Vol. 29. – P. 343–347. – DOI: 10.1016/j.matpr.2020.07.287.



10. Machine learning for predictive modeling in management of operations of EDM equipment product / I. Ghosh, M. Sanyal, R. Jana, P.K. Dan // 2016 Second International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN). – IEEE, 2016. – P. 169–174. – DOI: 10.1109/ICRCICN.2016.7813651.



11. Surface roughness prediction of machined aluminum alloy with wire electrical discharge machining by different machine learning algorithms / M. Ulas, O. Aydur, T. Gurgenc, C. Ozel // Journal of Materials Research and Technology. – 2020. – Vol. 9 (6). – P. 12512–12524. – DOI: 10.1016/j.jmrt.2020.08.098.



12. Kumar N.A., Babu A.S. Influence of input parameters on the near-dry WEDM of Monel alloy // Materials and Manufacturing Processes. – 2018. – Vol. 33 (1). – P. 85–92. – DOI: 10.1080/10426914.2017.1279297.



13. Shape memory effect and superelasticity of titanium nickelide alloys implanted with high ion doses / A. Pogrebnjak, S. Bratushka, V.M. Beresnev, N. Levintant-Zayonts // Russian Chemical Reviews. – 2013. – Vol. 82 (12). – P. 1135. – DOI: 10.1070/RC2013v082n12ABEH004344.



14. Progress in modeling of electrical discharge machining process / W. Ming, S. Zhang, G. Zhang, J. Du, J. Ma, W. He, C. Cao, K. Liu // International Journal of Heat and Mass Transfer. – 2022. – Vol. 187. – P. 122563. – DOI: 10.1016/j.ijheatmasstransfer.2022.122563.



15. Reviewing performance measures of the die-sinking electrical discharge machining process: challenges and future scopes / R.K. Shastri, C.P. Mohanty, S. Dash, K.M.P. Gopal, A.R. Annamalai, C.P. Jen // Nanomaterials. – 2022. – Vol. 12 (3). – P. 384. – DOI: 10.3390/nano12030384.



16. Boopathi S. An extensive review on sustainable developments of dry and near-dry electrical discharge machining processes // Journal of Manufacturing Science and Engineering. – 2022. – Vol. 144 (5). – P. 050801. – DOI: 10.1115/1.4052527.



17. The effect of EDM die-sinking parameters on material removal rate of beryllium copper using full factorial method / M.A. Ali, M. Samsul, N.I. Hussein, M. Rizal, R. Izamshah, M. Hadzley, M.S. Kasim, M.A. Sulaiman, S. Sivarao // Middle-East Journal of Scientific Research. – 2013. – Vol. 16 (1). – P. 44–50. – DOI: 10.5829/idosi.mejsr.2013.16.01.2249.



18. Influence of machining parameters on electro discharge machining of NiTi shape memory alloys / S. Daneshmand, E.F. Kahrizi, E. Abedi, M.M. Abdolhosseini // International Journal of Electrochemical Science. – 2013. – Vol. 8 (30). – P. 3095–3104. – DOI: 10.1016/S1452-3981(23)14376-8.



19. Effect of tool rotational and Al2O3 powder in electro discharge machining characteristics of NiTi-60 shape memory alloy / S. Daneshmand, V. Monfared, A.A. Lotfi Neyestanak // Silicon. – 2017. – Vol. 9 (2). – P. 273–283. – DOI: 10.1007/s12633-016-9412-1.



20. Baroi B.K., Jagadish, Patowari P.K. A review on sustainability, health, and safety issues of electrical discharge machining // Journal of the Brazilian Society of Mechanical Sciences and Engineering. – 2022. – Vol. 44 (2). – P. 59. – DOI: 10.1007/s40430-021-03351-4.



21. Influences of cryogenically treated work material on near-dry wire-cut electrical discharge machining process / E. Kannan, Y. Trabelsi, S. Boopathi, S. Alagesan // Surface Topography: Metrology and Properties. – 2022. – Vol. 10 (1). – P. 015027. – DOI: 10.1088/2051-672X/ac53e1.



22. Abdulkareem S., Khan A.A., Konneh M. Reducing electrode wear ratio using cryogenic cooling during electrical discharge machining // The International Journal of Advanced Manufacturing Technology. – 2009. – Vol. 45. – P. 1146–1151. – DOI: 10.1007/s00170-009-2060-5.



23. Gill S.S., Singh J. Effect of deep cryogenic treatment on machinability of titanium alloy (Ti-6246) in electric discharge drilling // Materials and Manufacturing Processes. – 2010. – Vol. 25 (6). – P. 378–385. – DOI: 10.1080/10426910903179914.



24. Srivastava V., Pandey P.M. Performance evaluation of electrical discharge machining (EDM) process using cryogenically cooled electrode // Materials and Manufacturing Processes. – 2012. – Vol. 27 (6). – P. 683–688. – DOI: 10.1080/10426914.2011.602790.



25. The effects of cold and cryogenic treatments on the machinability of beryllium-copper alloy in electro discharge machining / Y. Yildiz, M. Sundaram, K. Rajurkar, M. Nalbant // 44th CIRP Conference on Manufacturing Systems. – Madison, Wisconsin, 2011. – P. 1–6.



26. Singh R., Singh B. Comparison of cryo-treatment effect on machining characteristics of titanium in electric discharge machining // International Journal of Automotive and Mechanical Engineering. – 2011. – Vol. 3. – P. 239–248. – DOI: 10.15282/ijame.3.2011.1.0020.



27. Effect of cryogenic treatment on thermal conductivity properties of copper / D. Nadig, V. Ramakrishnan, P. Sampathkumaran, C. Prashanth // AIP Conference Proceedings. – 2012. – Vol. 1435 (1). – P. 133–139.



28. Srivastava V., Pandey P.M. Effect of process parameters on the performance of EDM process with ultrasonic assisted cryogenically cooled electrode // Journal of Manufacturing Processes. – 2012. – Vol. 14 (3). – P. 393–402. – DOI: 10.1016/j.jmapro.2012.05.001.



29. Liqing L., Yingjie S. Study of dry EDM with oxygen-mixed and cryogenic cooling approaches // Procedia CIRP. – 2013. – Vol. 6. – P. 344–350.



30. Jafferson J., Hariharan P. Machining performance of cryogenically treated electrodes in microelectric discharge machining: a comparative experimental study // Materials and Manufacturing Processes. – 2013. – Vol. 28 (4). – P. 397–402.



31. Study of the effect of cryogenic treatment of tool electrodes during electro discharge machining / V. Mathai, R. Vaghela, H. Dave, H. Raval, K. Desai // Proceedings of the Eighth International Conference on Precision Meso, Micro & Nano Engineering (COPEN-8: 2013). – National Institute of Technology, Calicut, India, 2013. – P. 13–15.



32. Singh J., Singh G., Pandey P.M. Electric discharge machining using rapid manufactured complex shape copper electrode with cryogenic cooling channel // Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. – 2021. – Vol. 235 (1–2). – P. 173–185. – DOI: 10.1177/0954405420949102.



33. Influence of cryogenic treatment on the performance of micro-EDM tool electrode in machining of magnesium alloy AZ31B / D. Prakash, M. Tariq, R. Davis, A. Singh, K. Debnath // Materials Today: Proceedings. – 2021. – Vol. 39. – P. 1198–1201. – DOI: 10.1016/j.matpr.2020.03.589.



34. Machinability analysis and optimization of electrical discharge machining in AA6061-T6/15wt.% SiC composite by the multi-criteria decision-making approach / G. Karthik Pandiyan, T. Prabaharan, D. Jafrey Daniel James, V. Sivalingam // Journal of Materials Engineering and Performance. – 2022. – Vol. 31 (5). – P. 3741–3752. – DOI: 10.1007/s11665-021-06511-8.



35. Surface roughness and surface crack length prediction using supervised machine learning–based approach of electrical discharge machining of deep cryogenically treated NiTi, NiCu, and BeCu alloys / D.A. Sawant, V.S. Jatti, A. Mishra, E.M. Sefene, A.V. Jatti // International Journal of Advanced Manufacturing Technology. – 2023. – Vol. 128. – P. 5595–5612. – DOI: 10.1007/s00170-023-12269-1.

Для цитирования:

Исследование электроэрозионной обработки криогенно обработанных бериллиево-медных сплавов (BeCu) / Д. Савант, Р. Булах, В. Джатти, С. Чинчаникар, А. Мишра, Э.М. Сефене // Обработка металлов (технология, оборудование, инструменты). – 2024. – Т. 26, № 1. – С. 175–193. – DOI: 10.17212/1994-6309-2024-26.1-175-193.

For citation:

Sawant D., Bulakh R., Jatti V., Chinchanikar S., Mishra A., Sefene E.M. Investigation on the electrical discharge machining of cryogenic treated beryllium copper (BeCu) alloys. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2024, vol. 26, no. 1, pp. 175–193. DOI: 10.17212/1994-6309-2024-26.1-175-193. (In Russian).

Просмотров: 320