Obrabotka metallov

OBRABOTKA METALLOV

METAL WORKING AND MATERIAL SCIENCE
Print ISSN: 1994-6309    Online ISSN: 2541-819X
English | Русский

Recent issue
Vol. 27, No 3 July – September 2025

Preparation of coatings with high infrared emissivity

Vol. 26, No 2 April - June 2024
Authors:

Sirota Vaycheslav,
Zaitsev Sergey,
Limarenko Mikhail,
Prokhorenkov Dmitry,
Lebedev Mikhail,
Churikov Anton,
Danshin Alexey
DOI: http://dx.doi.org/10.17212/1994-6309-2024-26.2-23-37
Abstract

Introduction. One of the promising modern methods of coating formation is detonation gas dynamic sputtering. Coatings obtained by this method have high adhesion to the substrate, dense structure and specified functional properties. Development of technology for obtaining functional coatings with high emission coefficient in the infrared range is an urgent need for the development of high-temperature industrial processes and technologies. High-temperature industrial processes consume a large amount of energy, so improving the energy efficiency of industrial equipment is considered as one of the ways to overcome the ever-growing energy crisis. To this end, coatings with high infrared emissivity have been developed for industrial furnaces. These coatings are usually applied to the furnace walls, which significantly improves energy efficiency by increasing heat transfer from the heat-emitting surfaces of the furnace. The purpose of the work is to obtain coatings with high emission indices in the infrared range for further recommendation of its use in baking ovens of Shebekinsky machine-building plant. Methods for studying coating specimens obtained by detonation gas-thermal method: scanning electron microscopy, X-ray phase analysis, energy dispersive analysis, infrared spectroscopy. Results and discussion. The microstructure, phase composition, emissivity and thermal cycling resistance of Fe2O3; Al2O3 + 10 % Fe2O3; Ti + 10% Fe2O3 coatings obtained by detonation gas-dynamic powder spraying are investigated in this work. The results of the study showed that the obtained coatings have a dense structure, increased emissivity and resistance to thermal treatment cycles, as a result of which the structure of the crystal lattice of the coatings does not change.


Keywords: Detonation spraying, High emissivity coating

References

1. Tan W., Petorak C.A., Trice R.W. Rare-earth modified zirconium diboride high emissivity coatings for hypersonic applications. Journal of the European Ceramic Society, 2014, vol. 34 (1), pp. 1–11. DOI: 10.1016/j.jeurceramsoc.2013.07.016.



2. Tang H., Xin T., Sun Q., Yi C., Jiang Z., Wang F. Influence of FeSO4 concentration on thermal emissivity of coatings formed on titanium alloy by micro-arc oxidation. Applied Surface Science, 2011, vol. 257 (24), pp. 10839–10844. DOI: 10.1016/j.apsusc.2011.07.118.



3. Li X., Peoples J., Yao P., Ruan X. Ultrawhite BaSO4 paints and films for remarkable daytime subambient radiative cooling. ACS Applied Materials & Interfaces, 2021, vol. 13 (18), pp. 21733–21739. DOI: 10.1021/acsami.1c02368.



4. Liu J., Chen Z., Yang L., Chai P., Wan Q. The effect of SiC coatings microstructure on their infrared emissivity. Journal of Asian Ceramic Societies, 2023, vol. 11 (1), pp. 98–104. DOI: 10.1080/21870764.2022.2159952.



5. Shao G., Wu X., Cui S., Shen X., Kong Y., Lu Y., Jiao C., Jiao J. High emissivity MoSi2–ZrO2–borosilicate glass multiphase coating with SiB6 addition for fibrous ZrO2 ceramic. Ceramics International, 2016, vol. 42 (7), pp. 8140–8150. DOI: 10.1016/j.ceramint.2016.02.020.



6. Huang X., Li N., Wang J., Liu D., Xu J., Zhang Z., Zhong M. Single nanoporous MgHPO4·1.2H2O for daytime radiative cooling. ACS Applied Materials & Interfaces, 2019, vol. 12 (2), pp. 2252–2258. DOI: 10.1021/acsami.9b14615.



7. Švantner M., Honnerová P., Veselý Z. The influence of furnace wall emissivity on steel charge heating. Infrared Physics & Technology, 2016, vol. 74, pp. 63–71. DOI: 10.1016/j.infrared.2015.12.001.



8. Zhao J., Ma L., Zayed M.E., Elsheikh A.H., Li W., Yan Q., Wang J. Industrial reheating furnaces: A review of energy efficiency assessments, waste heat recovery potentials, heating process characteristics and perspectives for steel industry. Process Safety and Environmental Protection, 2021, vol. 147, pp. 1209–1228. DOI: 10.1016/j.psep.2021.01.045.



9. Sako E.Y., Orsolini H.D., Moreira M., De Sousa Meneses D., Pandolfelli V.C. Emissivity of spinel and titanate structures aiming at the development of industrial high-temperature ceramic coatings. Journal of the European Ceramic Society, 2021, vol. 41 (4), pp. 2958–2967. DOI: 10.1016/j.jeurceramsoc.2020.11.010.



10. Mahadik D.B., Gujjar S., Gouda G.M., Barshilia H.C. Double layer SiO2/Al2O3 high emissivity coatings on stainless steel substrates using simple spray deposition system. Applied Surface Science, 2014, vol. 299, pp. 6–11. DOI: 10.1016/j.apsusc.2014.01.159.



11. Gahmousse A., Ferria K., Rubio J., Cornejo N., Tamayo A. Influence of Fe2O3 on the structure and near-infrared emissivity of aluminosilicate glass coatings. Applied Physics A, 2020, vol. 126 (9), p. 732. DOI: 10.1007/s00339-020-03921-8.



12. Heynderickx G.J., Nozawa M. High-emissivity coatings on reactor tubes and furnace walls in steam cracking furnaces. Chemical Engineering Science, 2004, vol. 59 (22–23), pp. 5657–5662. DOI: 10.1016/j.ces.2004.07.075.



13. Mauer M., Kalenda P., Honner M., Vacikova P. Composite fillers and their influence on emissivity. Journal of Physics and Chemistry of Solids, 2012, vol. 73 (12), pp. 1550–1555. DOI: 10.1016/j.jpcs.2011.11.015.



14. He B., Li F., Zhou H., Dai Y., Sun B. Study of failure of EB-PVD thermal barrier coating upon near-α titanium alloy. Journal of Materials Science, 2008, vol. 43, pp. 839–846. DOI: 10.1007/s10853-007-2204-7.



15. Zukerman I., Zhitomirsky V.N., Beit-Ya’akov G., Boxman R.L., Raveh A., Kim S.K. Vacuum arc deposition of Al2O3–ZrO2 coatings: arc behavior and coating characteristics. Journal of Materials Science, 2010, vol. 45, pp. 6379–6388. DOI: 10.1007/s10853-010-4734-7.



16. Shin D.-I., Gitzhofer F., Moreau C. Thermal property evolution of metal based thermal barrier coatings with heat treatments. Journal of Materials Science, 2007, vol. 42, pp. 5915–5923. DOI: 10.1007/s10853-007-1772-x.



17. Tang H., Sun Q., Yi C.G., Jiang Z.H., Wang F.P. High emissivity coatings on titanium alloy prepared by micro-arc oxidation for high temperature application. Journal of Materials Science, 2012, vol. 47, pp. 2162–2168. DOI: 10.1007/s10853-011-6017-3.



18. Zhang H., Wang C., Wang Y., Wang S., Chen G., Zou Y., Deng C., Jia D., Zhou Y. Ca-Mn co-doping LaCrO3 coating with high emissivity and good mechanical property for enhancing high-temperature radiant heat dissipation. Journal of the European Ceramic Society, 2022, vol. 42 (15), pp. 7288–7299. DOI: 10.1016/j.jeurceramsoc.2022.08.033.



19. Yao Z., Hu B., Shen Q., Niu A., Jiang Z., Su P., Ju P. Preparation of black high absorbance and high emissivity thermal control coating on Ti alloy by plasma electrolytic oxidation. Surface and Coatings Technology, 2014, vol. 253, pp. 166–170. DOI: 10.1016/j.surfcoat.2014.05.032.



20. Kolisnichenko O.V., Tyurin Yu.N., Tovbin R. Effektivnost' protsessa napyleniya pokrytii s ispol'zovaniem mnogokamernogo detonatsionnogo ustroistva [Efficiency of process of coating spraying using multi-chamber detonation unit]. Avtomaticheskaya svarka = The Paton Welding Journal, 2017, no. 10, pp. 28–34.



21. Kovaleva M., Prozorova M., Arseenko M., Tyurin Y., Kolisnichenko O., Yapryntsev M., Novikov V., Vagina O., Sirota V. Zircon-based ceramic coatings formed by a new multi-chamber gas-dynamic accelerator. Coatings, 2017, vol. 7 (9), p. 142. DOI: 10.3390/coatings7090142.



22. Sirota V.V., Zaitsev S., Prokhorenkov D., Limarenko M., Skiba A., Kovaleva M.G. Detonation spraying of composite targets based on Ni, Cr and B4C for magnetron multi-functional coating. Key Engineering Materials, 2022, vol. 909, pp. 115–120. DOI: 10.4028/p-74w31h.



23. Kovaleva M., Goncharov I., Novikov V., Yapryntsev M., Vagina O., Pavlenko I., Sirota V., Tyurin Y., Kolisnichenko O. Effect of heat treatment on the microstructure and phase composition of ZrB2–MoSi2 coating. Coatings, 2019, vol. 9 (12), p. 779. DOI: 10.3390/coatings9120779.



24. Wang Q., Sun Q., Zhang M.-X., Niu W.-J., Tang C.-B., Wang K.-S., Xing R., Zhai L., Wang L. The influence of cold and detonation thermal spraying processes on the microstructure and properties of Al-based composite coatings on Mg alloy. Surface and Coatings Technology, 2018, vol. 352, pp. 627–633. DOI: 10.1016/j.surfcoat.2018.08.045.



25. Endo T., Obayashi R., Tajiri T., Kimura K., Morohashi Y., Johzaki T., Matsuoka K., Hanafusa T., Mizunari S. Thermal spray using a high-frequency pulse detonation combustor operated in the liquid-purge mode. Journal of Thermal Spray Technology, 2016, vol. 25, pp. 494–508. DOI: 10.1007/s11666-015-0354-8.

Acknowledgements. Funding

Funding

The research was carried out within the framework of the Complex Project No. 30/22 dated 10/12/22 within the framework of Agreement No. 075–11-2023-017 dated 02/13/2023 “Creation of high-tech production of composite cutting elements of machines and thermal equipment for processing agricultural products”.

 

Acknowledgements

The research was carried out using the equipment of the Center for High Technologies of BSTU named after V. G. Shukhov.

For citation:

Sirota V.V., Zaitsev S.V., Limarenko M.V., Prokhorenkov D.S., Lebedev M.S., Churikov A.S., Dan’shin A.L. Preparation of coatings with high infrared emissivity. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2024, vol. 26, no. 2, pp. 23–37. DOI: 10.17212/1994-6309-2024-26.2-23-37. (In Russian).

Views: 1419