Список литературы
1. РД 153-34.1-003-01. Сварка, термообработка и контроль трубных систем котлов и трубопроводов при монтаже и ремонте энергетического оборудования (РТМ-1с): утв. приказом Минэнерго России от 02.07.01 № 197: введ. 01.01.2002 / ЗАО «Прочность МК». – М., 2002.
2. Макаров Э.Л. Холодные трещины при сварке легированных сталей. – М.: Машиностроение, 1981. – 248 с.
3. Гежа В.В., Могильников В.А., Мельников П.В. Экспресс-методика определения содержания диффузионного водорода в наплавленном металле // Вопросы материаловедения. – 2022. – № 4 (112). – С. 17–22. – DOI: 10.22349/1994-6716-2022-112-4-17-22.
4. Совершенствование технологий производства сварочных электродов / А.В. Баранов, Ю.Д. Брусницын, Д.А. Кащенко, А.А. Боков // Автоматическая сварка. – 2005. – № 12. – С. 43–44.
5. Металлургия дуговой сварки: взаимодействие металла с газами / И.К. Походня, И.Р. Явдощин, А.П. Пальцевич, В.И. Швачко, А.С. Котельчук. – Киев: Наукова думка, 2004. – 445 с.
6. Изучение взаимодействия компонентов сварочных материалов с жидким стеклом / В.Т. Калинников, А.И. Николаев, В.В. Рыбин, Ю.Д. Брусницын, В.А. Малышевский, В.Б. Петров // Вопросы материаловедения. – 2008. – № 3 (55). – С. 31–40.
7. Марченко А.Е., Скорина Н.В. Влияние технологических факторов изготовления низководородных электродов на содержание водорода в наплавленном металле // Автоматическая сварка. – 2013. – № 8 – С. 14–25.
8. Петров Г.Л. Сварочные материалы. – Л.: Машиностроение, 1972. – 280 с.
9. Верхотуров А.Д., Бабенко Э.Г., Макиенко В.М. Методология создания сварочных материалов. – Хабаровск: Изд-во ДВГУПС, 2009. – 128 с.
10. Взаимодействие компонентов электродных покрытий с жидким стеклом при нагревании / А.И. Николаев, С.И. Печенюк, Ю.П. Семушина, В.В. Семушин, Л.Ф. Кузьмич, Д.Л. Рогачев, Н.Л. Михайлова, Ю.Д. Брусницын, В.В. Рыбин // Сварочное производство. – 2009. – № 11. – С. 13–17.
11. Константы взаимодействия металлов с газами: справочник / под ред. Б.А. Колачева, Ю.В. Левинского. – М.: Металлургия, 1987. – 368 с.
12. Comparative evaluation of austenite grain in high-strength rail steel during welding, thermal processing and plasma surface hardening / A.D. Kolosov, V.E. Gozbenko, M.G. Shtayger, S.K. Kargapoltsev, A.E. Balanovskiy, A.I. Karlina, A.V. Sivtsov, S.A. Nebogin // IOP Conference Series: Materials Science and Engineering. – 2019. – Vol. 560 (1). – P. 012185. – DOI: 10.1088/1757-899X/560/1/012185.
13. Индуцированные водородом холодные трещины в сварных соединениях высокопрочных низколегированных сталей (обзор) / И.К. Походня, А.В. Игнатенко, А.П. Пальцевич, В.С. Синюк // Автоматическая сварка. – 2013. – № 5. – С. 3–14.
14. Панченко О.В. К вопросу о методах определения диффузионного водорода // Известия высших учебных заведений. Машиностроение. – 2011. – № 9. – С. 57–61.
15. ISO 3690:2000. Welding and allied processes. Determination of hydrogen content in ferritic steel arc weld metal. – 36 p.
16. Standard methods for the determination of diffusible hydrogen content of martensitic, bainitic, and ferritic steel weld metal produced by arc welding / American Welding Society, Committee on Filler Metal. – AWS, 1986.
17. JIS Z 3113. Method for measurement of hydrogen evolved from deposited metal / Japanese Standards Association. – JSA, 1975. – 3 p.
18. ГОСТ Р ИСО 2560–2023. Материалы сварочные. Электроды покрытые для ручной дуговой сварки нелегированных и мелкозернистых сталей. Классификация. – М.: Рос. ин-т стандартизации, 2023. – 36 с.
19. Jenkins N., Hart P.H.M.H., Parker D.H. An evaluation of rapid methods for diffusible weld hydrogen // Welding Journal. – 1997. – Vol. 76 (1). – P. 1–10.
20. Hydrogen determination in welded specimens by carrier gas hot extraction – a review on the main parameters and their effects on hydrogen measurement / M. Rhode, T. Schaupp, C. Muenster, T. Mente, T. Boellinghaus, T. Kannengiesser // Welding in the World. – 2019. – Vol. 63. – P. 511–526. – DOI: 10.1007/s40194-018-0664-9.
21. Диффузия водорода в сварных соединениях конструкционных сталей / Н.Н. Сергеев, А.Н. Сергеев, С.Н. Кутепов, А.Е. Гвоздев, Е.В. Агеев // Известия Юго-Западного государственного университета. – 2017. – 21(6). – С. 85–95. – DOI: 10.21869/2223-1560-2017-21-6-85-95.
22. Кархин В.А., Алдаие Я., Левченко А.М. Коэффициент диффузии водорода в свариваемых сталях // Сварка и диагностика. – 2021. – № 6. – С. 20–27.
23. Алдаие Я., Кархин В.А., Левченко А.М. Растворимость водорода в свариваемых сталях // Сварка и диагностика. – 2022. – № 3. – С. 25–31.
24. ГОСТ 34061-2017. Сварка и родственные процессы. Определение содержания водорода в наплавленном металле и металле шва дуговой сварки. – М.: Стандартинформ, 2020. – 31 с.
25. СТО 02494680-0056-2007. Слоистое разрушение сварных соединений строительных сварных конструкций. Требования при проектировании, изготовлении и монтаже. Приложение Г (справочное): Определение начального содержания диффузионного водорода в металле шва методом «карандашной» спиртовой (глицериновой) пробы (краткое описание). – М.: ЦНИИПСК им. Н.П. Мельникова, 2007. – С. 32–33.
26. Hybrid processing: the impact of mechanical and surface thermal treatment integration onto the machine parts quality / V.Yu. Skeeba, V.V. Ivancivsky, A.V. Kutyshkin, K.A. Parts // IOP Conference Series: Materials Science and Engineering. – 2016. – Vol. 126 (1). – P. 012016. – DOI: 10.1088/1757-899x/126/1/012016.
27. Research on the possibility of lowering the manufacturing accuracy of cycloid transmission wheels with intermediate rolling elements and a free cage / E.A. Efremenkov, N.V. Martyushev, V.Yu. Skeeba, M.V. Grechneva, A.V. Olisov, A.D. Ens // Applied Sciences. – 2022. – Vol. 12 (1). – P. 5. – DOI: 10.3390/app12010005.
28. Martyushev N.V., Skeeba V.Yu. The method of quantitative automatic metallographic analysis // Journal of Physics: Conference Series. – 2017. – Vol. 803 (1). – P. 012094. – DOI: 10.1088/1742-6596/803/1/012094.
29. Skeeba V.Yu., Ivancivsky V.V. Reliability of quality forecast for hybrid metal-working machinery // IOP Conference Series: Earth and Environmental Science. – 2018. – Vol. 194 (2). – P. 022037. – DOI: 10.1088/1755-1315/194/2/022037.
30. Defining efficient modes range for plasma spraying coatings / E.A. Zverev, V.Yu. Skeeba, P.Yu. Skeeba, I.V. Khlebova // IOP Conference Series: Earth and Environmental Science. – 2017. – Vol. 87 (8). – P. 082061. – DOI: 10.1088/1755-1315/87/8/082061.
31. Скиба В.Ю. Гибридное технологическое оборудование: повышение эффективности ранних стадий проектирования комплексированных металлообрабатывающих станков // Обработка металлов (технология, оборудование, инструменты). – 2019. – Т. 21, № 2. – C. 62–83. – DOI: 10.17212/1994-6309-2019-21.2-62-83.
32. Исследование процесса автоматического управления сменой полярности тока в условиях гибридной технологии электрохимической обработки коррозионностойких сталей / М.А. Борисов, Д.В. Лобанов, А.С. Янюшкин, В.Ю. Скиба // Обработка металлов (технология, оборудование, инструменты). – 2020. – Т. 22, № 1. – С.6–15. – DOI: 10.17212/1994-6309-2020-22.1-6-15.
33. Influence of welding regimes on structure and properties of steel 12KH18N10T weld metal in different spatial positions / R.A. Mamadaliev, P.V. Bakhmatov, N.V. Martyushev, V.Yu. Skeeba, A.I. Karlina // Metallurgist. – 2022. – Vol. 65 (11–12). – P. 1255–1264. – DOI: 10.1007/s11015-022-01271-9.
34. Study of mechanical properties of C-Mn-Si composition metal after wire-arc additive manufacturing (WAAM) / A.E. Balanovskiy, N.A. Astafyeva, V.V. Kondratyev, A.I. Karlina // CIS Iron and Steel Review. – 2021. – Vol. 22. – P. 66–71. – DOI: 10.17580/cisisr.2021.02.12.
35. Development of rolling procedures for pipes of K55 strength class at the laboratorial mill / R.R. Adigamov, K.A. Baraboshkin, P.A. Mishnev, A.I. Karlina // CIS Iron and Steel Review. – 2022. – Vol. 24. – P. 60–66. – DOI: 10.17580/cisisr.2022.02.09.
36. Determination of rail steel structural elements via the method of atomic force microscopy / A.E. Balanovskiy, M.G. Shtaiger, V.V. Kondratyev, A.I. Karlina // CIS Iron and Steel Review. – 2022. – Vol. 23. – P. 86–91. – DOI: 10.17580/cisisr.2022.01.16.
37. Padhy G.K., Komizo Y. Diffusible hydrogen in steel weldments: A status review // Transactions of JWRI. – 2013. – Vol. 42 (1). – P. 39–62.
38. Mente T., Boellinghaus T., Schmitz-Niederau M. Heat treatment effects on the reduction of hydrogen in multi-layer high-strength weld joints // Welding in the World. – 2012. – Vol. 56. – P. 26–36. – DOI: 10.1007/BF03321362.
39. Schaupp T., Rhode M., Kannengiesser T. Influence of welding parameters on diffusible hydrogen content in high-strength steel welds using modified spray arc process // Welding in the World. – 2018. – Vol. 62. – P. 9–18. – DOI: 10.1007/s40194-017-0535-9.
40. Surface hardening of structural steel by cathode spot of welding arc / A.E. Balanovskiy, M.G. Shtayger, A.I. Karlina, S.K. Kargapoltsev, V.E. Gozbenko, Yu.I. Karlina, A.S. Govorkov, B.O. Kuznetsov // IOP Conference Series: Materials Science and Engineering. – 2019. – Vol. 560 (1). – P. 012138. – DOI: 10.1088/1757-899X/560/1/012138.
41. Investigation of macro and micro structures of compounds of high-strength rails implemented by contact butt welding using burning-off / M.G. Shtayger, A.E. Balanovskiy, S.K. Kargapoltsev, V.E. Gozbenko, A.I. Karlina, Yu.I. Karlina, A.S. Govorkov, B.O. Kuznetsov // IOP Conference Series: Materials Science and Engineering. – 2019. – Vol. 560 (1). – P. 012190. – DOI: 10.1088/1757-899X/560/1/012190.