Введение. Современная нефтегазовая промышленность нуждается в разработке материалов высокой прочности для обсадных труб. Изменения в технологиях производства стального проката являются одной из актуальных задач. Снижение себестоимости обсадных труб из высококачественной стали становится серьезной задачей для нефтегазовой промышленности. Многофазные микроструктуры, содержащие игольчатый феррит или фазу с преобладанием игольчатого феррита, обладают хорошими комплексными свойствами в сталях HSLA. В настоящей статье основное внимание уделяется результатам, полученным с использованием современных методов термомеханической прокатки. Результаты и обсуждение. В данной работе проведен анализ характеристик технологий термомеханической прокатки и их влияния на микроструктуру стального проката для обсадных труб. Показано, что прогнозирование механических свойств на основе микроструктурных характеристик стали усложняется из-за большого количества задействованных параметров. Для этого необходима оптимальная микроструктура стали. Удовлетворительная микроструктура зависит от нескольких факторов, таких как химический состав, обработка горячей деформацией и ускоренное охлаждение. Легирующие элементы оказывают комплексное влияние на свойства стали, и обычно в состав стали вводят легирующие добавки. С металлургической точки зрения выбор легирующих элементов и металлургический процесс могут сильно повлиять на полученную микроструктуру. Заключение. В настоящем обзоре сообщается о наиболее репрезентативном исследовании, касающемся технологий термомеханической прокатки и микроструктурного фактора в сталях для обсадных труб. Он включает в себя сводку наиболее важных переменных процесса, свойств материалов, нормативных правил, а также характеристик микроструктуры и механических свойств металла для производства обсадных труб. Предполагается, что этот обзор поможет читателям с разным опытом, от неспециалистов по обработке металлов давлением или материаловедов до специалистов различных промышленных приложений и исследователей.
1. Эфрон Л.И. Металловедение в «большой» металлургии. Трубные стали. – М.: Металлургиздат, 2012. – 696 с. – ISBN 978-5-902194-63-7.
2. Матросов Ю.И., Литвиненко С.А., Голованенко С.А. Сталь для магистральных трубопроводов. – М.: Металлургия, 1989. – 288 с.
3. Технологии производства стальных бесшовных труб для добычи трудноизвлекаемых углеводородов / А.Г. Ширяев, С.Г. Четвериков, С.Г. Чикалов, И.Ю. Пышминцев, П.В. Крылов // Известия высших учебных заведений. Черная металлургия. – 2018. – Т. 61 (11). – С. 866–875. – DOI: 10.17073/0368-0797-2018-11-866-875.
4. API Spec 5CT. Обсадные и насосно-компрессорные трубы. Технические условия. – 9-е изд. – Американский нефтяной институт, 2011. – 287 с.
5. ISO 11960. Нефтяная и газовая промышленность – трубы стальные, применяемые в качестве обсадных или насосно-компрессорных труб для скважин. – 4-е изд. – Международная организация по стандартизации, 2011. – 269 с.
6. DSTU ISO 11960:2020. Petroleum and natural gas industries – Steel pipes for use as casing and tubing for wells. – Geneva, Switzerland: IOS, 2020.
7. ГОСТ Р 53366–2009. Трубы стальные, применяемые в качестве обсадных или насосно-компрессорных труб для скважин в нефтяной и газовой промышленности. Общие технические условия. – М.: Стандартинформ, 2010. – 190 с.
8. СТО Газпром 2-4.1-158–2007. Технические требования к обсадным трубам для месторождений ОАО «Газпром». – М.: ОАО «Газпром», 2007. – 23 с.
9. СТО Газпром 2-4.1-228–2008. Технические требования к насосно-компрессорным трубам для месторождений ОАО «Газпром». – М.: ОАО «Газпром», 2008. – 32 с.
10. Oil and gas wells and their integrity: Implications for shale and unconventional resource exploitation / R.J. Davies, S. Almond, R.S. Ward, R.B. Jackson, C. Adams, F. Worrall, L.G. Herringshaw, J.G. Gluyas, M.A. Whitehead // Marine and Petroleum Geology. – 2014. – Vol. 56. – P. 239–254. – DOI: 10.1016/j.marpetgeo.2014.03.001.
11. Microstructure evolution of the semi-macro segregation induced banded structure in high strength oil tubes during quenching and tempering treatments / B. Li, M. Luo, Z. Yang, F. Yang, H. Liu, H. Tang, Z. Zhang, J. Zhang // Materials. – 2019. – Vol. 12 (20). – P. 3310. – DOI: 10.3390/ma12203310.
12. Effects of Q&T parameters on phase transformation, microstructure, precipitation and mechanical properties in an oil casing steel / Q. Zhang, Q. Yuan, Z. Xiong, M. Liu, G. Xu // Physics of Metals and Metallography. – 2021. – Vol. 122 (14). – P. 1463–1472. – DOI: 10.1134/S0031918X21140180.
13. Ниобийсодержащие низколегированные стали / Ф. Хайстеркамп, К. Хулка, Ю.И. Матросов, Ю.Д. Морозов, Л.И. Эфрон, В.И. Столяров, О.Н. Чевская. – М.: Интермет Инжиниринг, 1999. – 94 с.
14. Baker T.N. Microalloyed steels // Ironmaking & Steelmaking. – 2016. – Vol. 43 (4). – P. 264–307. – DOI: 10.1179/1743281215Y.0000000063.
15. Baker T.N. Titanium microalloyed steels // Ironmaking & Steelmaking. – 2019. – Vol. 46 (1). – P. 1–55. – DOI: 10.1080/03019233.2018.1446496.
16. Pickering F.B. Overview of titanium microalloyed steels // Titanium technology in microalloyed steels / ed. by T.N. Baker. – London: The Institute of Materials, 1997. – P. 10–43.
17. Takahashi M. Sheet steel technology for the last 100 years: Progress in sheet steels in hand with the automotive industry // Tetsu To Hagane. – 2014. – Vol. 100 (1). – P. 82–93. – DOI: 10.2355/tetsutohagane.100.82.
18. Latest developments in mechanical properties and metallurgical features of high strength line pipe steels / D. Belato Rosado, W. De Waele, D. Vanderschueren, S. Hertelé // International Journal of Sustainable Construction and Design. – 2013. – Vol. 4 (1). – DOI: 10.21825/scad.v4i1.742.
19. Joo M.S., Suh D.W., Bhadeshia H.K.D.H. Mechanical anisotropy in steels for pipelines // ISIJ International. – 2013. – Vol. 53 (8). – P. 1305–1314. – DOI: 10.2355/isijinternational.53.1305.
20. Microstructure and mechanical properties of two API steels for iron ore pipelines / L.B. Godefroid, L.C. Candido, R.B. Toffolo, L.H. Barbosa // Materials Research. – 2014. – Vol. 17 (suppl 1). – P. 114–120. – DOI: 10.1590/S1516-14392014005000068.
21. Tanaka T. Controlled rolling of steel plate and strip // International Metals Reviews. – 1981. – Vol. 26 (1). – P. 185–212. – DOI: 10.1179/imr.1981.26.1.185.
22. Relation among rolling parameters, microstructures and mechanical properties in an acicular ferrite pipeline steel / W. Wang, W. Yan, L. Zhu, P. Hu, Y. Shan, K. Yang // Materials & Design. – 2009. – Vol. 30 (9). – P. 3436–3443. – DOI: 10.1016/j.matdes.2009.03.026.
23. Influences of austenization temperature and annealing time on duplex ultrafine microstructure and mechanical properties of medium Mn steel / C. Wang, W.Q. Cao, Y. Han, C.Y. Wang, C.X. Huang, H. Dong // Journal of Iron and Steel Research International. – 2015. – Vol. 22 (1). – P. 42–47. – DOI: 10.1016/S1006-706X(15)60007-3.
24. Kim N.J., Thomas G. Effects of morphology on the mechanical behavior of a dual phase Fe/2Si/0.1C steel // Metallurgical Transactions A. – 1981. – Vol. 12. – P. 483–489. – DOI: 10.1007/BF02648546.
25. Liang X. The complex phase transformation of austenite in high strength linepipe steels and its influence on the mechanical properties: diss. – University of Pittsburgh, 2012.
26. Effect of microstructure on the yield ratio and low temperature toughness of linepipe steels / Y.M. Kim, S.K. Kim, Y.J. Lim, N.J. Kim // ISIJ International. – 2002. – Vol. 42 (12). – P. 1571–1577. – DOI: 10.2355/isijinternational.42.1571.
27. Separation phenomenon occurring during the Charpy impact test of API X80 pipeline steels / S.Y. Shin, S. Hong, J.-H. Bae, K. Kim, S. Lee // Metallurgical and Materials Transactions A. – 2009. – Vol. 40. – P. 2333–2349. – DOI: 10.1007/s11661-009-9943-9.
28. Relationships among crystallographic texture, fracture behavior and Charpy impact toughness in API X100 pipeline steel / X.-L. Yang, Y.-B. Xu, X.-D. Tan, D. Wu // Materials Science and Engineering: A. – 2015. – Vol. 641. – P. 96–106. – DOI: 10.1016/j.msea.2015.06.029.
29. Microstructure of high strength niobium-containing pipeline steel / S. Shanmugam, R.D.K. Misra, J. Hartmann, S. Jansto // Materials Science and Engineering: A. – 2006. – Vol. 441 (1–2). – P. 215–229. – DOI: 10.1016/j.msea.2006.08.017.
30. Effects of microstructure and pipe forming strain on yield strength before and after spiral pipe forming of API X70 and X80 linepipe steel sheets / S.S. Sohn, S.Y. Han, J.H. Bae, H.S. Kim, S. Lee // Materials Science and Engineering: A. – 2013. – Vol. 573. – P. 18–26. – DOI: 10.1016/j.msea.2013.02.050.
31. Effects of microstructure and yield ratio on strain hardening and Bauschinger effect in two API X80 linepipe steels / S.Y. Han, S.S. Sohn, S. Shin, J.H. Bae, H.S. Kim, S. Lee // Materials Science and Engineering: A. – 2012. – Vol. 551. – P. 192–199. – DOI: 10.1016/j.msea.2012.05.007.
32. High-strength steel development for pipelines: a Brazilian perspective. / I.S. Bott, L.F.G. De Souza, J.C.G. Teixeira, P.R. Rios // Metallurgical and Materials Transactions A. – 2005. – Vol. 36. – P. 443–454. – DOI: 10.1007/s11661-005-0315-9.
33. Improvement of mechanical properties of heavy plates for high strength linepipe application i.e. in Arctic Regions / F. Grimpe, H. Meuser, F. Gerdemann, E. Muthmann // 2nd International Conference on Super-High Strength Steels, Garda, Italy, 17–20 October 2010. – Associazione Italiana di Metallurgia (AIM), 2010. – P. 1–13.
34. Challenges to a pipe manufacturer driven by worldwide pipe projects / H.-G. Hillenbrand, C. Kalwa, J. Schröder, C. Kassel // 18th Joint Technical Meeting on Pipeline Research. – 2011. – Vol. 13. – P. 1–12.
35. Nonn A., Kalwa C. Modelling of damage behaviour of high strength pipeline stell // 18th European Conference on Fracture. – Dresden, 2010. – P. 1–8.
36. Пейганович Н.В. Выпуск нефтегазопроводных труб с повышенной эксплуатационной надежностью // Металлург. – 2007. – № 12. – С. 51–55.
37. Шабалов И.П., Морозов Ю.Д., Эфрон Л.И. Стали для труб и строительных конструкций с повышенными эксплуатационными свойствами. – М.: Металлургиздат, 2003. – 520 с.
38. Ментюков К.Ю. Влияние термомеханической обработки при производстве проката и трубного передела на структуру и механические свойства низколегированных сталей для труб большого диаметра: дис. ... канд. техн. наук: 05.16.01. – М., 2017. – 122 с.
39. A review on casing while drilling technology for oil and gas production with well control model and economical analysis / D. Patel, V. Thakar, S. Pandian, M. Shah, A. Sircar // Petroleum. – 2019. – Vol. 5 (1). – P. 1–12. – DOI: 10.1016/j.petlm.2018.12.003.
40. Using casing to drill directional wells / K.R. Fontenot, B. Lesso, R.D. Strickler, T. Warren // Oilfield Review. – 2005. – Vol. 17 (2). – P. 44–61.
41. Simultaneous drill and case technology-case histories, status and options for further development / D. Hahn, W. Van Gestel, N. Fröhlich, G. Stewart // IADC/SPE Drilling Conference, New Orleans, Louisiana, February 2000. – DOI: 10.2118/59126-MS.
42. Radwan A., Karimi M. Feasibility study of casing drilling application in hpht environments: A review of challenges, benefits, and limitations // SPE/IADC Middle East Drilling Technology Conference and Exhibition, Muscat, Oman, October 2011. – DOI: 10.2118/148433-MS.
43. Verhoeven J.D. A review of microsegregation induced banding phenomena in steels // Journal of Materials Engineering and Performance. – 2000. – Vol. 9 (3). – P. 286–296. – DOI: 10.1361/105994900770345935.
44. Morrison W.B. Microalloy steels – the beginning // Materials Science and Technology. – 2009. – Vol. 25 (9). – P. 1066–1073. – DOI: 10.1179/174328409X453299.
45. Morrison W.B. Influence of small niobium additions on properties of carbon-manganese steels // Journal of the Iron and Steel Institute. – 1963. – Vol. 201 (4). – P. 317–325.
46. Quantitative analysis of mixed niobium-titanium carbonitride solubility in HSLA steels based on atom probe tomography and electrical resistivity measurements. / J. Webel, H. Mohrbacher, E. Detemple, D. Britz, F. Mücklich // Journal of Materials Research and Technology. – 2022. – Vol. 18. – P. 2048–2063. – DOI: 10.1016/j.jmrt.2022.03.098.
47. Tracing microalloy precipitation in Nb-Ti HSLA steel during austenite conditioning / J. Webel, A. Herges, D. Britz, E. Detemple, V. Flaxa, H. Mohrbacher, F. Mücklich // Metals. – 2020. – Vol. 10. – P. 243. – DOI: 10.3390/met10020243.
48. Cuddy L.J. The effect of microalloy concentration on the recrystallization of austenite during hot deformation // Thermomechanical Processing of Microalloyed Austenite, Warrendale, PA: The Metallurgical Society / AIME, 1982. – P.129–140. – ISBN 0-89520-398-7.
49. On strength of microalloyed steels: an interpretive review / A.J. DeArdo, M.J. Hua, K.G. Cho, C.I. Garcia // Materials Science and Technology. – 2009. – Vol. 25 (9). – P. 1074–1082. – DOI: 10.1179/174328409X455233.
50. Modern HSLA steels and role of non-recrystallisation temperature / S. Vervynckt, K. Verbeken, B. Lopez, J.J. Jonas // International Materials Reviews. – 2012. – Vol. 57 (4). – P. 187–207. – DOI: 10.1179/1743280411y.0000000013.
51. DeArdo A.J. Niobium in modern steels // International Materials Reviews. – 2003. – Vol. 48 (6). – P. 371–402. – DOI: 10.1179/095066003225008833.
52. Gladman T. The physical metallurgy of microalloyed steels. – Institute of Materials, 1997. – 363 p. – (Book / the Institute of Materials; vol. 615). – ISBN 0901716812.
53. Strengthening from Nb-rich clusters in a Nb-microalloyed steel / K.Y. Xie, T. Zheng, J.M. Cairney, H. Kaul, J.G. Williams, F. Barbaro, C.R. Killmore, S.P. Ringer // Scripta Materialia. – 2012. – Vol. 66 (9). – P. 710–713. – DOI: 10.1016/j.scriptamat.2012.01.029.
54. Statistical and theoretical analysis of precipitates in dual-phase steels microalloyed with titanium and their effect on mechanical properties / R. Soto, W. Saikaly, X. Bano, C. Issartel, G. Rigaut, A. Charai // Acta Materialia. – 1999. – Vol. 47 (12). – P. 3475–3481. – DOI: 10.1016/S1359-6454(99)00190-1.
55. Zhang L., Kannengiesser T. Austenite grain growth and microstructure control in simulated heat affected zones of microalloyed HSLA steel // Materials Science and Engineering: A. – 2014. – Vol. 613. – P. 326–335. – DOI: 10.1016/j.msea.2014.06.106.
56. Non-isothermal prior austenite grain growth of a high-Nb X100 pipeline steel during a simulated welding heat cycle process / Y. Gu, P. Tian, X. Wang, X.-l. Han, B. Liao, F.-r. Xiao // Materials and Design. – 2016. – Vol. 89. – P. 589–596. – DOI: 101016/jmatdes201509039.
57. Development of high HAZ toughness steel plates for box columns with high heat input welding / A. Kojima, K.-I. Yoshii, T. Hada, O. Saeki, K. Ichikawa, Y. Yoshida, Y. Shimura, K. Azuma // Nippon Steel Technical Report. – 2004. – N 90. – P. 39–44.
58. Effect of dissolution and precipitation of Nb on the formation of acicular ferrite/bainite ferrite in low-carbon HSLA steels / Y. Chen, D. Zhang, Y. Liu, H. Li, D. Xu // Materials Characterization. – 2013. – Vol. 84. – P. 232–239. – DOI: 10.1016/j.matchar.2013.08.005.
59. Karjalainen L.P., Maccagno T.M., Jonas J.J. Softening and flow stress behaviour of Nb microalloyed steels during hot rolling simulation // ISIJ International. – 1995. – Vol. 35 (12). – P. 1523–1531. – DOI: 10.2355/isijinternational.35.1523.
60. Hansen S.S., Sande J.B.V., Cohen M. Niobium carbonitride precipitation and austenite recrystallization in hot-rolled microalloyed steels // Metallurgical Transactions A. – 1980. – Vol. 11. – P. 387–402. – DOI: 10.1007/BF02654563.
61. Microstructure and mechanical properties of TMCP heavy plate microalloyed steel / J. Hu, L.X. Du, H. Xie, X.H. Gao, R.D.K. Misra // Materials Science and Engineering: A. – 2014. – Vol. 607. – P. 122–131. – DOI: 10.1016/j.msea.2014.03.133.
62. Structure-mechanical property relationship in low carbon microalloyed steel plate processed using controlled rolling and two-stage continuous cooling / J. Hu, L.X. Du, J.J. Wang, H. Xie, C.R. Gao, R.D.K. Misra // Materials Science and Engineering: A. – 2013. – Vol. 585. – P. 197–204. – DOI: 10.1016/j.msea.2013.07.071.
63. Non-metallic inclusion and intragranular nucleation of ferrite in Ti-killed C–Mn steel / J. Byun, J. Shim, Y.W. Cho, D.N. Lee // Acta Materialia. – 2003. – Vol. 51 (6). – P. 1593–1606. – DOI: 10.1016/S1359-6454(02)00560-8.
64. Crystallography of intragranular ferrite formed on (MnS + V(C, N)) complex precipitate in austenite / G. Miyamoto, T. Shinyoshi, J. Yamaguchi, T. Furuhara, T. Maki, R. Uemori // Scripta Materialia. – 2003. – Vol. 48 (4). – P. 371–377. – DOI: 10.1016/S1359-6462(02)00451-7.
65. Effect of V and N precipitation on acicular ferrite formation in sulfur-lean vanadium steels / C. Capdevila, C. García-Mateo, J. Chao, F.G. Caballero // Metallurgical and Materials Transactions A. – 2009. – Vol. 40 (3). – P. 522–538. – DOI: 10.1007/s11661-008-9730-z.
66. Babu S.S., Bhadeshia H.K.D.H. Mechanism of the transition from bainite to acicular ferrite // Materials Transactions, JIM. – 1991. – Vol. 32 (8). – P. 679–688. – DOI: 10.2320/matertrans1989.32.679.
67. Acicular ferrite formation in a medium carbon steel with a two stage continuous cooling / I. Madariaga, I. Gutiérrez, C. Garc??a-de Andrés, C. Capdevila // Scripta Materialia. – 1999. – Vol. 41 (3). – P. 229–235. – DOI: 10.1016/S1359-6462(99)00149-9.
68. Aminorroaya Yamini S. Influence of microalloying elements (Ti, Nb) and nitrogen concentrations on precipitation of pipeline steels – A thermodynamic approach // Engineering Reports. – 2021. – Vol. 3 (7). – P. e12337. – DOI: 10.1002/eng2.12337.
69. Nature of large (Ti, Nb)(C, N) particles precipitated during the solidification of Ti, Nb HSLA steel / X. Zhuo, X. Wang, W. Wang, H.G. Lee // Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material. – 2007. – Vol. 14 (2). – P. 112–117. – DOI: 10.1016/S1005-8850(07)60023-1.
70. Den Boer A.W., Malakhov D.V. Critical role of carbon during production of ferroniobium alloy additions // Canadian Metallurgical Quarterly. – 2014. – Vol. 53 (4). – P. 423–431. – DOI: 10.1179/1879139514Y.0000000134.
71. The mechanism for coarse Nb-rich particle formation in steel / S. Abraham, R. Bodnar, J. Lonnqvist, J. Hagstrom, E. Rydgren // Metallurgical and Materials Transactions A. – 2021. – Vol. 52. – P. 3727–3749. – DOI: 10.1007/s11661-021-06324-3.
72. Microstructural features controlling mechanical properties in Nb-Mo microalloyed steels. Part I: Yield strength / P. Uranga, N. Isasti, D. Jorge-Badiola, M.L. Taheri // Metallurgical and Materials Transactions A. – 2014. – Vol. 45. – P. 4960–4971. – DOI: 10.1007/s11661-014-2450-7.
73. Sn segregation at grain boundary and interface between MnS and matrix in Fe-3 mass% Si alloys doped with tin / S. Suzuki, K. Kuroki, H. Kobayashi, N. Takahasi // Materials Transactions, JIM. – 1992. – Vol. 33 (11). – P. 1068–1076. – DOI: 10.2320/matertrans1989.33.1068.
74. Tsunekage N., Tsubakino H. Effects of sulfur content and sulfide-forming elements addition on impact properties of ferrite-pearlitic microalloyed steels // ISIJ International. – 2001. – Vol. 41 (5). – P. 498–505. – DOI: 10.2355/isijinternational.41.498.
75. Phillips R., Chapman J.A. Influence of finish rolling temperature on mechanical properties of some commercial steels rolled to 13/16 in. diameter bars // Journal of the Iron and Steel Institute. – 1966. – Vol. 204. – P. 615–622.
76. Optimization of metallurgical factors for production of high strength, high toughness steel plate by controlled rolling / M. Hiroyoshi, T. Osuka, I. Kozasu, K. Tsukada // Transactions of the Iron and Steel Institute of Japan. – 1972. – Vol. 12. – P. 435–443.
77. Hall E.O. The deformation and ageing of mild steel: III discussion of results // Proceedings of the Physical Society. Section B. – 1951. – Vol. 64 (9). – P. 747. – DOI: 10.1088/0370-1301/64/9/303.
78. Petch N.J. The cleavage strength of polycrystals // Journal of the Iron and Steel Institute. – 1953. – Vol. 174. – P. 25–28.
79. The plastic deformation of polycrystalline aggregates / R. Armstrong, I. Codd, R.M. Douthwaite, N.J. Petch // The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics. – 1962. – Vol. 7 (73). – P. 45–58. – DOI: 10.1080/14786436208201857.
80. Hoogendoorn T.M., Spanraft M.J. Quantifying the effect of microalloy elements on structures during processing // Proceedings. Microalloying ’75 – Washington, 1975. – P. 75–89.
81. Microalloyed steels through history until 2018: review of chemical composition, processing and hydrogen service / J.C. Villalobos, A. Del-Pozo, B. Campillo, J. Mayen, S. Serna // Metals. – 2018. – Vol. 8 (5). – P. 351. – DOI: 10.3390/met8050351.
82. Palmiere E.J., Garcia C.I., DeArdo A.J. Compositional and microstructural changes which attend reheating and grain coarsening in steels containing niobium // Metallurgical and Materials Transactions A. – 1994. – Vol. 25. – P. 277–286. – DOI: 10.1007/BF02647973.
83. Gauthier G., LeBon A.B. Discussion: on the recrystallization of austenite // Proceedings. Microalloying ’75. – Washington, 1975. – P. 1–3.
84. Hot rolling as a High-Temperature Thermo-Mechanical Process / I. Kozasu, C. Ouchi, T. Sampei, T. Okita // Proceedings. Microalloying ’75. – Washington, 1975. – P. 120–134.
85. DeArdo A.J. Microalloyed steels: fifty years of progress – An interpretive review. – URL: https://www.researchgate.net/publication/304374754_Microalloyed_Steels_Fifty_Years_of_Progress_-_An_Interpretive_Review (accessed: 06.08.2024).
86. The significance of central segregation of continuously cast billet on banded microstructure and mechanical properties of section steel / F. Guo, X. Wang, J. Wang, R.D.K. Misra, C. Shang // Metals. – 2020. – Vol. 10. – P. 76. – DOI: 10.3390/met10010076.
87. Stalheim D.G. The use of high temperature processing (HTP) steel for high strength oil and gas transmission pipeline applications // Iron & Steel. – 2005. – Vol. 40 (11). – P. 699–704.
88. Misra D., Jansto S.G. Niobium-based alloy design for structural applications: processing-structure-property paradigm // HSLA Steels 2015, Microalloying 2015 & Offshore Engineering Steels 2015: conference proceedings. – Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. – P. 261–266. – DOI: 10.1002/9781119223399.ch27.
89. The effect of coiling temperature on the microstructure and mechanical properties of a niobium–titanium microalloyed steel processed via thin slab casting / V.S.A. Challa, W.H. Zhou, R.D.K. Misra, R. O'Malley, S.G. Jansto // Materials Science and Engineering: A. – 2014. – Vol. 595. – P. 143–153. – DOI: 10.1016/j.msea.2013.12.002.
90. Sarmento E.C., Evans J. Effect of strain accumulation and dynamic recrystallisation on the flow stress of HSLA steels during flat rolling // Proceedings of an International Symposium on Processing, Microstructure, and Properties of HSLA Steels 1992: ISS-AIME. – Warrendale, Pennsylvania, 1992. – P. 105–112.
91. Yada H., Matsumura Y., Senuma T. A new thermomechanical heat treatment for grain refining in low carbon steels // Proceedings of the 1st International Conference on Physical Metallurgy of Thermomechanical Processing of Steels and Other Metals (THERMEC '88), Keidanren Kaikan, Tokyo, Japan. – Tokyo: ISIJ, 1988. – P. 200.
92. The dynamic transformation of ferrite above Ae3 and the consequences on hot rolling of steels / F. Siciliano, S.F. Rodrigues, C. Aranas Jr , J.J. Jonas // Tecnologia em Metalurgia, Materiais e Mineração. – 2020. – Vol. 17 (2). – P. 90–95. – DOI: 10.4322/2176-1523.20202230.
93. Tamura I., Sekine H., Tanaka T. Thermomechanical processing of high-strength low-alloy steels. – Butterworth-Heinemann, 2013. – ISBN 0-408-11034-1.
94. Thermal mechanisms of grain refinement in steels: A review / Z. Nasiri, S. Ghaemifar, M. Naghizadeh, H. Mirzadeh // Metals and Materials International. – 2021. – Vol. 27. – P. 2078–2094. – DOI: 10.1007/s12540-020-00700-1.
95. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions / T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas // Progress in Materials Science. – 2014. – Vol. 60. – P. 130–207. – DOI: 10.1016/j.pmatsci.2013.09.002.
96. Huang K.E., Logé R.E. A review of dynamic recrystallization phenomena in metallic materials // Materials & Design. – 2016. – Vol. 111 (8). – P. 548–574. – DOI: 10.1016/j.matdes.2016.09.012.
97. Sanz L., Pereda B., López B. Effect of thermomechanical treatment and coiling temperature on the strengthening mechanisms of low carbon steels microalloyed with Nb // Materials Science and Engineering: A. – 2017. – Vol. 685. – P. 377–390. – DOI: 10.1016/j.msea.2017.01.014.
98. Buchmayr B. Thermomechanical treatment of steels – A real disruptive technology since decades // Steel Research International. –2017. – Vol. 88 (10). – P. 1700182. – DOI: 10.1002/srin.201700182.
99. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides / Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, E. Maeda // ISIJ International. – 2004. – Vol. 44 (11). – P. 1945–1951. – DOI: 10.2355/isijinternational.44.1945.
100. Zaitsev A., Arutyunyan N. Low-carbon Ti-Mo microalloyed hot rolled steels: special features of the formation of the structural state and mechanical properties // Metals. – 2021. – Vol. 11 (10). – P. 1584. – DOI: 10.3390/met11101584.
101. Zhao J., Jiang Z. Thermomechanical processing of advanced high strength steels // Progress in Materials Science. – 2018. – Vol. 94. – P. 174–242. – DOI: 10.1016/j.pmatsci.2018.01.006.
102. Закономерности выделения карбида титана в малоуглеродистых высокопрочных сталях, микролегированных титаном и молибденом / Н.Г. Шапошников, А.В. Колдаев, А.И. Зайцев, И.Г. Родионова, Д.Л. Дьяконов, Н.А. Арутюнян // Металлург. – 2016. – № 8. – С. 49–54.
103. Numerical simulation of temperature field in steel under action of electron beam heating Source / V.Yu. Skeeba, V.V. Ivancivsky, N.V. Martyushev, D.V. Lobanov, N.V. Vakhrushev, A.K. Zhigulev // Key Engineering Materials. – 2016. – Vol. 712. – P. 105–111. – DOI: 10.4028/www.scientific.net/KEM.712.105.
104. Adigamov R.R., Baraboshkin K.A., Yusupov V.S. Study of the phase transition kinetics in the experimental melting of rolled coils of K55 grade strength steel for pipes manufacturing // Steel in Translation. – 2022. – Vol. 52 (11). – P. 1098–1105. – DOI: 10.3103/S096709122211002X.
105. Development of rolling procedures for pipes of K55 strength class at the laboratorial mill / R.R. Adigamov, K.A. Baraboshkin, P.A. Mishnev, A.I. Karlina // CIS Iron and Steel Review. – 2022. – Vol. 24. – P. 60–66. – DOI: 10.17580/cisisr.2022.02.09.
Термомеханическая прокатка при производстве обсадных труб (обзор исследований) / К.А. Барабошкин, Р.Р. Адигамов, В.С. Юсупов, И.А. Кожевникова, А.И. Карлина // Обработка металлов (технология, оборудование, инструменты). – 2024. – Т. 26, № 3. – С. 24–51. – DOI: 10.17212/1994-6309-2024-26.3-24-51.
Baraboshkin K.A., Adigamov R.R., Yusupov V.S., Kozhevnikova I.A., Karlina A.I. Thermomechanical rolling in well casing production (research review). Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2024, vol. 26, no. 3, pp. 24–51. DOI: 10.17212/1994-6309-2024-26.3-24-51. (In Russian).