Обработка металлов

ОБРАБОТКА МЕТАЛЛОВ

ТЕХНОЛОГИЯ • ОБОРУДОВАНИЕ • ИНСТРУМЕНТЫ
Print ISSN: 1994-6309    Online ISSN: 2541-819X
English | Русский

Последний выпуск
Том 26, № 4 Октябрь - Декабрь 2024

Влияние направления печати на характер износа PLA-биоматериала, полученного методом FDM: исследование для имплантата тазобедренного сустава

Том 26, № 4 Октябрь - Декабрь 2024
Авторы:

Дама Йогирадж Басаврадж,
Джоги Бхагван Фатру,
Паваде Раджу,
Кулкарни Атул
DOI: http://dx.doi.org/10.17212/1994-6309-2024-26.4-19-40
Аннотация

Введение. Операция по эндопротезированию тазобедренного сустава предполагает замену поврежденного сустава имплантатом, который может восстановить его функциональность. Технология 3D-печати более перспективна, чем традиционный производственный процесс, когда речь заходит о создании более сложных деталей и форм. Цель текущего исследовательского проекта: определить, насколько быстро можно изготовить имплантат из биоматериала для эндопротезирования тазобедренного сустава с использованием 3D-печати, изучив скорость износа изделий, изготовленных при использовании различных направлений печати. Несмотря на наличие нескольких технологий аддитивного производства, технология послойного наплавления (FDM – fuse deposition modeling) оказала значительное влияние на здравоохранение, автомобильную промышленность и др. В основном это объясняется адаптируемостью различных композиционных материалов на основе полимеров и их экономичностью. Такие полимеры, напечатанные на 3D-принтере, нуждаются в дальнейшем изучении для оценки износа в зависимости от различных направлений 3D-печати. Биоматериалы на основе полимолочной кислоты (PLA – polylactic acid) были тщательно изучены с целью определения их пригодности в качестве материалов для изготовления тазобедренных суставов. Цель работы. В настоящей работе проведено экспериментальное исследование влияния направления печати на износ в условиях сухого трения скольжения материала из полимолочной кислоты (PLA), полученного путем послойного наплавления (FDM), по схеме «штифт – диск (SS 316)». Кроме того, были разработаны экспериментальные и эмпирические модели для прогнозирования производительности с учетом влияния нагрузки и скорости скольжения. Для определения оптимальных параметров был использован алгоритм реляционного анализа «серых» систем. Методы исследования. Методом FDM-печати в различных направлениях изготовлен штифт. Под направлением печати подразумевается печать под углами 0°, 45° и 90°, при этом все остальные параметры 3D-печати оставались неизменными. Испытание на износ проводили по кинематической схеме «штифт – диск». В ходе экспериментов варьировалась нормальная нагрузка на штифт и скорость вращения диска. Эксперименты были методически разработаны для изучения влияния входных параметров на удельную скорость износа. Было проведено около 13 экспериментов на каждое направление печати при пути трения, равном 4 км, в диапазоне нагрузки 400–800 Н при скорости скольжения 450–750 об/мин. Результаты и обсуждение. В ходе исследования были получены важные результаты, особенно касающиеся направления 3D-печати компонентов. Было обнаружено, что наименьший износ при трении скольжения наблюдается у штифта, напечатанного под углом 0°, чуть больший износ характерен для штифта, напечатанного под углом 90°. Соединение слоев на штифте, напечатанном под углом 45°, деформировалось при более высокой нагрузке в основном из-за повышения температуры. Низкая прочность соединения в штифте, напечатанном под углом 45°, привела к сильному износу при трении скольжения. Оптимальный результат достигнут при скорости скольжения 451 об/мин и нагрузке 600 Н. Результаты исследования очень полезны при выборе материалов для 3D-печати биомедицинских имплантатов, изделий медицинского и промышленного назначения.


Ключевые слова: 3D-печать, биоматериалы, технология послойной печати, имплантат, ориентация печати, полимолочная кислота, износостойкость

Список литературы

1. Ventola C.L. Medical applications for 3D printing: current and projected uses // Pharmacy and Therapeutics Journal: Peer Review. – 2014. – Vol. 39 (10). – P. 704–711.



2. Gibson I., Rosen D., Stucker B. Direct digital manufacturing // Additive Manufacturing Technologies. – 2nd ed. – New York: Springer, 2015. – P. 375–397. – DOI: 10.1007/978-1-4939-2113-3_16.



3. Patil N.A., Njuguna J., Kandasubramanian B. UHMWPE for biomedical applications: performance and functionalization // European Polymer Journal. – 2020. – Vol. 125. – P. 109529. – DOI: 10.1016/j.eurpolymj.2020.109529.



4. Kurtz S.M. Primer on UHMWPE // UHMWPE biomaterials handbook: ultra-high molecular weight polyethylene in total joint replacement and medical. – 3rd ed. – Amsterdam: Elsevier, 2016. – P. 1–6.



5. Lewis G. Properties of crosslinked ultra-high-molecular-weight polyethylene // Biomaterials. – 2001. – Vol. 22 (4). – P. 371–401. – DOI: 10.1016/S0142-9612(00)00195-2.



6. Lubrication and wear of ultra-high molecular weight polyethylene in total joint replacements / A. Wang, A. Essner, V. Polineni, C. Stark, J. Dumbleton // Tribology International. – 1998. – Vol. 31. – P. 17–33. – DOI: 10.1016/S0301-679X (98)00005-X.



7. Yousuf J.M., Mohsin A.A. Enhancing wear rate of high-density polyethylene (HDPE) by adding ceramic particles to propose an option for artificial hip joint liner // IOP Conference Series: Materials Science and Engineering. – 2019. – Vol. 561. – P. 012071. – DOI: 10.1088/1757-899X/561/1/012071.



8. Relationship between polyethylene wear and osteolysis in hips with a second-generation porous-coated cementless cup after seven years of follow-up / K.F. Orishimo, A.M. Claus, C.J. Sychterz, C.A. Engh // The Journal of Bone & Joint Surgery. – 2003. – Vol. 85 (6). – P. 1095–1099. – DOI: 10.2106/00004623-200306000-00018.



9. Mechanical and tribological performance of HDPE matrix reinforced by hybrid Gr/TiO2 NPs for hip joint replacement / A. Nabhan, G. Sherif, R. Abouzeid, M. Taha // Journal of Functional Biomaterials. – 2023. – Vol. 14 (3). – P. 140. – DOI: 10.3390/jfb14030140.



10. Wear mechanism and debris analysis of PEEK as an alternative to CoCrMo in the femoral component of total knee replacement / X. Zhang, T. Zhang, K. Chen, H. Xu, C. Feng, D. Zhang // Friction. – 2023. – Vol. 11. – P. 1845–1861. – DOI: 10.1007/s40544-022-0700-z.



11. Posterolateral or direct lateral surgical approach for hemiarthroplasty after a hip fracture: a randomized clinical trial alongside a natural experiment / M.C.J.M. Tol, N.W. Willigenburg, A.J. Rasker, H.C. Willems, T. Gosens, M. Heetveld, M.G.M. Schotanus, B. Eggen, M. Kormos, S.L. van der Pas, A. van der Vaart, J.C. Goslings, R.W. Poolman // JAMA Network Open. – 2024. – Vol. 7 (1). – P. e2350765. – DOI: 10.1001/jamanetworkopen.2023.50765.



12. 3D printing for hip implant applications: a review / O. Obinna, I. Stachurek, B. Kandasubramanian, J. Njuguna // Polymers (Basel). – 2020. – Vol. 12 (11). – P. 2682. – DOI: 10.3390/polym12112682.



13. Critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefineries / S. Bhagia, K. Bornani, R. Agarwal, A. Satlewal, J. Durkovic, R. Lagana, M. Bhagia, C.G. Yoo, X. Zhao, V. Kunc, Y. Pu, S. Ozcan, A.J. Ragauskas // Applied Materials Today. – 2021. – Vol. 24. – P. 101078. – DOI: 10.1016/j.apmt.2021.101078.



14. Biochar reinforced PLA composite for fused deposition modelling (FDM): a parametric study on mechanical performance / P. Anerao, A. Kulkarni, Y. Munde, A. Shinde, O. Das // Composites, Part C: Open Access. – 2023. – Vol. 12. – P. 100406. – DOI: 10.1016/j.jcomc.2023.100406.



15. Comparative analysis of drop impact resistance for different polymer based materials used for hearing aid casing / A. Gosavi, A. Kulkarni, Y. Dama, A. Deshpande, B. Jogi // Materials Today: Proceedings. – 2022. – Vol. 49. – P. 2433–2441. – DOI: 10.1016/j.matpr.2021.09.519.



16. Dama Y.B., Jogi B.F., Pawade R.S. Application of nonlinear analysis in evaluating additive manufacturing process for engineering design features: a study and recommendations // Communications on Applied Nonlinear Analysis. – 2024. – Vol. 31 (1s). – P. 94–105. – DOI: 10.52783/cana.v31.559.



17. FDM technology and the effect of printing parameters on the tensile strength of ABS parts / M. Daly, M. Tarfaoui, M. Chihi, C. Bouraoui // The International Journal of Advanced Manufacturing Technology. – 2023. – Vol. 126 (11–12). – P. 5307–5323. – DOI: 10.1007/s00170-023-11486-y.



18. Effect of process parameter on tensile properties of FDM printed PLA / L. Sandanamsamy, J. Mogan, K. Rajan, W.S.W. Harun, I. Ishak, F.R.M. Romlay, M. Samykano, K. Kadirgama // Materials Today: Proceedings. – 2023. – DOI: 10.1016/j.matpr.2023.03.217.



19. Eryildiz M. Effect of build orientation on mechanical behaviour and build time of FDM 3D-printed PLA parts: an experimental investigation // European Mechanical Science. – 2021. – Vol. 5 (3). – P. 116–120. – DOI: 10.26701/ems.881254.



20. Additive manufacturing of PLA structures using fused deposition modelling: effect of process parameters on mechanical properties and their optimal selection / J.M. Chacón, M.A. Caminero, E. García-Plaza, P.J. Núñez // Materials & Design. – 2017. – Vol. 124. – P. 143–157. – DOI: 10.1016/j.matdes.2017.03.065.



21. Explainable AI techniques for comprehensive analysis of the relationship between process parameters and material properties in FDM-based 3D-printed biocomposites / N. Kharate, P. Anerao, A. Kulkarni, M. Abdullah // Journal of Manufacturing and Materials Processing. – 2024. – Vol. 8 (4). – P. 171. – DOI: 10.3390/jmmp8040171.



22. Experimental investigation of dry sliding wear behaviour of jute/epoxy and jute/glass/epoxy hybrids using Taguchi approach / A. Paturkar, A. Mache, A. Deshpande, A. Kulkarni // Materials Today: Proceedings. – 2018. – Vol. 5 (11). – P. 23974–23983. – DOI: 10.1016/j.matpr.2018.10.190.



23. Satkar A.R., Mache A., Kulkarni A. Numerical investigation on perforation resistance of glass-carbon/epoxy hybrid composite laminate under ballistic impact // Materials Today: Proceedings. – 2022. – Vol. 59 (1). – P. 734–741. – DOI: 10.1016/j.matpr.2021.12.464.



24. Kanitkar Y.M., Kulkarni A.P., Wangikar K.S. Investigation of flexural properties of glass-Kevlar hybrid composite // European Journal of Engineering and Technology Research. – 2018. – Vol. 1. – P. 25–29. – DOI: 10.24018/ejeng.2016.1.1.90.



25. Virpe K., Deshpande A., Kulkarni A. A review on tribological behavior of polymer composite impregnated with carbon fillers // AIP Conference Proceedings. – 2020. – Vol. 2311 (1). – P. 070030. – DOI: 10.1063/5.0035408.



26. Чинчаникар С. Моделирование характеристик износа при скольжении композиционного материала на основе политетрафторэтилена (ПТФЭ), армированного углеродным волокном, в паре трения с SS304 (12Х18Н10Т) // Обработка металлов (технология, оборудование, инструменты). – 2022. – Т. 24, № 3. – С. 40–52. – DOI: 10.17212/1994-6309-2022-24.3-40-52.



27. Pawade R.S., Joshi S.S. Multi-objective optimization of surface roughness and cutting forces in high-speed turning of Inconel 718 using Taguchi grey relational analysis (TGRA) // The International Journal of Advanced Manufacturing Technology. – 2011. – Vol. 56 (1–4). – P. 57–62. – DOI: 10.1007/s00170-011-3183-z.

Для цитирования:

Влияние направления печати на характер износа PLA-биоматериала, полученного методом FDM: исследование для имплантата тазобедренного сустава / Й.Б. Дама, Б.Ф. Джоги, Р. Паваде, А.П. Кулкарни // Обработка металлов (технология, оборудование, инструменты). – 2024. – Т. 26, № 4. – С. 19–40. – DOI: 10.17212/1994-6309-2024-26.4-19-40.

For citation:

Dama Y.B., Jogi B.F., Pawade R., Kulkarni A.P. Impact of print orientation on wear behavior in FDM printed PLA Biomaterial: Study for hip-joint implant. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2024, vol. 26, no. 4, pp. 19–40. DOI: 10.17212/1994-6309-2024-26.4-19-40. (In Russian).

Просмотров: 134