Обработка металлов

ОБРАБОТКА МЕТАЛЛОВ

ТЕХНОЛОГИЯ • ОБОРУДОВАНИЕ • ИНСТРУМЕНТЫ
Print ISSN: 1994-6309    Online ISSN: 2541-819X
English | Русский

Последний выпуск
Том 26, № 4 Октябрь - Декабрь 2024

Обзор исследований высокоэнтропийных сплавов, их свойств, методов создания и применения

Том 26, № 4 Октябрь - Декабрь 2024
Авторы:

Шуберт Анна Владиславовна,
Коновалов Сергей Валерьевич,
Панченко Ирина Алексеевна
DOI: http://dx.doi.org/10.17212/1994-6309-2024-26.4-153-179
Аннотация

Введение. В статье рассматриваются перспективы изучения высокоэнтропийных сплавов (ВЭС) – металлических материалов с уникальными свойствами. Изучение высокоэнтропийных сплавов актуально в связи с их свойствами, экологической устойчивостью, экономической выгодой и технологическим потенциалом. ВЭС представляют интерес для исследователей благодаря их стабильности, прочности, коррозионной стойкости и другим характеристикам, что делает их перспективными для использования в аэрокосмической промышленности, автомобилестроении, медицине и микроэлектронике. Таким образом, исследование ВЭС способствует развитию новых материалов и технологическому прогрессу, обеспечивая возможности для создания инновационных продуктов и совершенствования существующих решений. Для эффективного использования потенциала высокоэнтропийных сплавов требуются исследования в ряде направлений. Во-первых, необходимо улучшить технологию производства таких сплавов и разработать новые способы их получения с улучшенными характеристиками и сниженной стоимостью. Во-вторых, требуется установить основные принципы работы высокоэнтропийных сплавов и изучить механизмы, оказывающие влияние на их свойства. Следует также разработать новые сплавы с заданными свойствами, провести эксперименты и компьютерное моделирование для оптимизации характеристик сплавов и определения наилучших составов. Цель работы: обзор последних достижений в области высокоэнтропийных сплавов (ВЭС), их свойств, методов создания и применения, а также определение наиболее перспективных направлений для дальнейших исследований. Методами исследования являются обзор и анализ на основании разработок преимущественно 2020–2024 гг., которые были выполнены отечественными и зарубежными учеными. В статье обсуждаются перспективы исследования высокоэнтропийных сплавов – материалов, имеющих широкий спектр применения в различных отраслях промышленности. В работе приводятся результаты исследований, проведенных преимущественно в 2020–2024 гг. Описываются основные свойства высокоэнтропийных сплавов, такие как высокая прочность, коррозионная стойкость, усталостные свойства сплавов, пластичность и деформируемость, термоустойчивость, электропроводящие и магнитные свойства, а также возможность создания сплавов с заданными характеристиками. Выявлены самые распространенные методы изменения свойств сплавов. Рассматриваются направления дальнейшего развития исследований в этой области. Результаты и обсуждение. Обзор литературы показывает, что наиболее перспективным направлением для дальнейшего изучения можно считать электропроводящие и магнитные свойства высокоэнтропийных сплавов. Это направление открывает значительные возможности для разработки новых энергосберегающих технологий, высокоэффективных сенсоров и магнитных материалов, что может привести к существенным инновациям в таких областях, как электроника, энергетика и информационные технологии. Исходя из проведенного анализа можно заключить, что высокоэнтропийные сплавы представляют собой перспективный класс материалов с широким спектром потенциальных применений. Дальнейшие исследования должны быть направлены на расширение границ знаний в области составов, методов и свойств ВЭС, а также на разработку новых материалов с улучшенными характеристиками, что откроет новые горизонты для инноваций в различных технологических секторах.


Ключевые слова: Высокоэнтропийные сплавы, износостойкость, жаропрочность, термоустойчивость, пластичность, усталостные свойства, легирование

Список литературы

1. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes / J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang // Advanced Engineering Materials. – 2004. – Vol. 6. – P. 299–303. – DOI: 10.1002/adem.200300567.



2. Microstructural development in equiatomic multicomponent alloys / B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent // Materials Science and Engineering: A. – 2004. – Vol. 375–377. – P. 213–218. – DOI: 10.1016/j.msea.2003.10.257.



3. Rogachev A.S. Structure, stability, and properties of high-entropy alloys // The Physics of Metals and Metallography. – 2020. – Vol. 121 (8). – P. 733–764. – DOI: 10.1134/S0031918X20080098. – EDN: TYMYVL.



4. Cui K., Zhang Y. High-entropy alloy films // Coatings. – 2023. – Vol. 13 (3). – P. 635. – DOI: 10.3390/coatings13030635.



5. On the laser additive manufacturing of high-entropy alloys: a critical assessment of in-situ monitoring techniques and their suitability / M.A. Mahmood, F.G. Alabtah, Y. Al-Hamidi, M. Khraisheh // Materials & Design. – 2023. – Vol. 226. – P. 111658. – DOI: 10.1016/j.matdes.2023.111658.



6. Achieving excellent wear and corrosion properties in laser additive manufactured CrMnFeCoNi high-entropy alloy by laser shock peening / Z. Tong, X. Pan, W. Zhou, Y. Yang, Y. Ye, D. Qian, X. Ren // Surface and Coatings Technology. – 2021. – Vol. 422. – P. 127504. – DOI: 10.1016/j.surfcoat.2021.127504.



7. Исследование сплава, полученного методом дуговой наплавки высокоэнтропийной порошковой проволокой / Р.Е. Крюков, А.Р. Михно, С.В. Коновалов, И.А. Панченко, И.А. Махнев // Ползуновский вестник. – 2024. – № 2. – С. 228–234. – DOI: 10.25712/ASTU.2072-8921.2024.02.030. – EDN: OCJLCW.



8. Effect of Mo addition on microstructural evolution and corrosion behaviors of AlCrFeNi3 eutectic high-entropy alloy / J. Wang, H. Jiang, W. Xie, X. Kong, S. Qin, H. Yao, Y. Li // Corrosion Science. – 2024. – Vol. 229. – P. 111879. – DOI: 10.1016/j.corsci.2024.111879.



9. Zeng W.P., Chen Y., Ye J. Effect of partial substitution of Cr with Co on the properties of Fe35NI20CR20-xCoxMo5P12C4B4 high-entropy bulk metallic glasses // Journal of Non-Crystalline Solids. – 2024. – P. 625. – DOI: 10.2139/ssrn.4563223.



10. Significant improvement in wear resistance of CoCrFeNi high-entropy alloy via boron doping / H. Zhang, J. Miao, C. Wang, T. Li, L. Zou, Y. Lu // Lubricants. – 2023. – Vol. 11. – P. 386. – DOI: 10.3390/lubricants11090386.



11. Effect of Nb addition on the corrosion and wear resistance of laser clad AlCr2FeCoNi high-entropy alloy coatings / X. Ji, K. Guan, Y. Bao, Z. Mao, F. Wang, H. Dai // Lubricants. – 2023. – Vol. 12. – P. 5. – DOI: 10.3390/lubricants12010005.



12. Effect of tungsten carbide (WC) on electrochemical corrosion behavior, hardness, and microstructure of CrFeCoNi high entropy alloy / A.H. Khallaf, M. Bhlol, O.M. Dawood, I.M. Ghayad, O.A. Elkady // Journal of Engineering and Applied Science. – 2022. – Vol. 69. – P. 97. – DOI: 10.1186/s44147-022-00097-1.



13. A novel strategy for architecting low interfacial energy transition phase to enhance thermal stability in a high-entropy alloy / Y. Zhang, N. Qiu, Z. Shen, C. Liu, X. Zuo // Journal of Alloys and Compounds. – 2023. – Vol. 947. – P. 169570. – DOI: 10.1016/j.jallcom.2023.169570.



14. Li J., Zuo J., Yu H. Effects of La on thermal stability, phase formation and magnetic properties of Fe-Co-Ni-Si-B-La high entropy alloys // Metals. – 2021. – Vol. 11. – P. 1907. – DOI: 10.3390/met11121907.



15. Polat G., Tekin M., Kotan H. Role of yttrium addition and annealing temperature on thermal stability and hardness of nanocrystalline CoCrFeNi high entropy alloy // Intermetallics. – 2022. – P. 107589. – DOI: 10.1016/j.intermet.2022.107589.



16. Температурная зависимость деформационного поведения высокоэнтропийных сплавов Co20Cr20Fe20Mn20Ni20, Co19Cr20Fe20Mn20Ni20С1 и Co17Cr20Fe20Mn20Ni20С3. Механические свойства и температурная зависимость предела текучести / Е.Г. Астафурова, К.А. Реунова, С.В. Астафуров, Д.О. Астапов // Физическая мезомеханика. – 2023. – Т. 26, № 6. – С. 5–16. – DOI: 10.55652/1683-805X_2023_26_6_5. – EDN: OLJPSG.



17. Enhancement of strength-ductility balance of heavy Ti and Al alloyed FeCoNiCr high-entropy alloys via boron doping / Y. Qi, T. Cao, H. Zong, Y. Wu, L. He, X. Ding, F. Jiang, S. Jin, G. Sha, J. Sun // Journal of Materials Science and Technology. – 2020. – Vol. 75. – P. 154–166. – DOI: 10.1016/j.jmst.2020.10.023.



18. Tailoring strength and ductility of high-entropy CrMnFeCoNi alloy by adding Al / X. Xian, Z.-H. Zhong, L.-J. Lin, Z.-X. Zhu, C. Chen, Y.-C. Wu // Rare Metals. – 2018. – Vol. 41. – P. 1015–1021. – DOI: 10.1007/s12598-018-1161-4.



19. Hardness and strength enhancements of CoCrFeMnNi high-entropy alloy with Nd doping / C. Wang, T.-H. Li, Y.-C. Liao, C.-L. Li, J.S.-C. Jang, C.-H. Hsueh // Materials Science and Engineering: A. – 2019. – P. 138192. – DOI: 10.1016/j.msea.2019.138192.



20. Excellent plasticity of C and Mo alloyed TRIP high entropy alloy via rolling and heat treatment / Z. Pengjie, W. Shuhuan, L. Yukun, C. Liansheng, L. Kun, Z. Dingguo // Journal of Materials Research and Technology. – 2021. – Vol. 15. – P. 2145–2151. – DOI: 10.1016/j.jmrt.2021.09.018.



21. Enhanced strength and plasticity of selective laser melted NbMoTaW refractory high-entropy alloy via carbon microalloying / J. Xu, R. Duan, K. Feng, C. Zhang, P. Liu, Z. Li // SSRN Electronic Journal. – 2022. – DOI: 10.2139/ssrn.4108454.



22. Influence of hydrogen on incipient plasticity in CoCrFeMnNi high-entropy alloy / G. Yang, Y. Zhao, D.-H. Lee, J.-M. Park, M.-Y. Seok, J.-Y. Suh, U. Ramamurty, J.-I. Jang // Scripta Materialia. – 2018. – Vol. 161. – P. 23–28. – DOI: 10.1016/j.scriptamat.2018.10.010.



23. Effects of tailoring Zn additions on the microstructural evolution and electrical properties in GaInSnZn high-entropy alloys / J. Bai, Z. Wang, M. Zhang, J. Qiao // Advanced Engineering Materials. – 2023. – Vol. 25. – P. 2201831. – DOI: 10.1002/adem.202201831.



24. Effect of Cu content on electrical resistivity, mechanical properties and corrosion resistance of AlCuNiTiZr0.75 high entropy alloy films / K. Huang, G. Wang, H. Qing, Y. Chen, H. Guo // Vacuum. – 2021. – Vol. 195. – P. 110695. – DOI: 10.1016/j.vacuum.2021.110695.



25. Enhancing fatigue life by ductile-transformable multicomponent B2 precipitates in a high-entropy alloy / R. Feng, Y. Rao, C. Liu, X. Xie, D. Yu, Y. Chen, M. Ghazisaeidi, T. Ungar, H. Wang, K. An, P.K. Liaw // Nature Communications. – 2021. – Vol. 12. – P. 1–12. – DOI: 10.1038/s41467-021-23689-6.



26. Li J., Zuo J., Yu H. Effects of La on thermal stability, phase formation and magnetic properties of Fe-Co-Ni-Si-B-La high entropy alloys // Metals. – 2021. – Vol. 11. – P. 1907. – DOI: 10.3390/met11121907.



27. Покрытия из высокоэнтропийных сплавов: состояние проблемы и перспективы развития / В.Е. Громов, С.В. Коновалов, О.А. Перегудов, М.О. Ефимов, Ю.А. Шлярова // Известия высших учебных заведений. Черная Металлургия. – 2022. – Т. 65, № 10. – С. 683–692. – DOI: 10.17073/0368-0797-2022-10-683-692.



28. High-entropy alloy based coatings: microstructures and properties / Y. Chen, P. Munroe, Z. Xie, S. Zhang // Protective thin coatings technology. – Boca Raton, FL: CRC Press, 2021. – P. 205–232. – DOI: 10.1201/9781003088349-6.



29. High temperature wear performance of laser-cladded FeNiCoAlCu high-entropy alloy coating / G. Jin, Z. Cai, Y. Guan, X. Cui, Z. Liu, Y. Li, M. Dong, D. Zhang // Applied Surface Science. – 2018. – Vol. 445. – P. 113–122. – DOI: 10.1016/j.apsusc.2018.03.135.



30. Preparing high-entropy ceramic films from high-entropy alloy substrate / F. Li, W. Cui, Y. Shao, J. Zhang, S. Du, Z. Chen, Z. Tian, K. Chen, G. Liu // Materials Chemistry and Physics. – 2022. – Vol. 287. – P. 126365. – DOI: 10.1016/j.matchemphys.2022.126365.



31. A novel magnetic FeCoNiCuAl high-entropy alloy film with excellent corrosion resistance / B. Li, H. Li, Y. Xia, M. Chen, Z. Wu, X. Tan, H. Xu // SSRN Electronic Journal. – 2023. – DOI: 10.2139/ssrn.4392421.



32. Lin C., Yao Y. Corrosion-resistant coating based on high-entropy alloys // Metals. – 2023. – Vol. 13. – P. 205. – DOI: 10.3390/met13020205.



33. Юров В.М., Гученко С.А., Маханов К.М. Высокоэнтропийные покрытия FeCoCrNiMoTiW и их свойства // Евразийский союз ученых. Серия: Технические и физико-математические науки. – 2021. – № 6 (87). – С. 12–16. – DOI: 10.31618/ESU.2413-9335.2021.1.87.1386.



34. Yurov V.M., Eremin E.N., Guchenko S. Microhardness and wear resistance of a high-entropy coating FeCrNiTiZrAl // Journal of Physics: Conference Series. – 2022. – Vol. 2182. – DOI: 10.1088/1742-6596/2182/1/012083.



35. Novel candidate of metal-based thermal barrier coatings: high-entropy alloy / X. Wang, H. Yao, L. Yuan, L. Chen, F. Xu, Z. Tan, D. He, Y. Yang, Y. Liu, Z. Zhou // Surface and Coatings Technology. – 2023. – Vol. 474. – DOI: 10.1016/j.surfcoat.2023.130087.



36. The corrosion behavior and film properties of Al-containing high-entropy alloys in acidic solutions / Y. Fu, C. Dai, H. Luo, D. Li, C. Du, X. Li // Applied Surface Science. – 2021. – Vol. 560. – DOI: 10.1016/j.apsusc.2021.149854.



37. Electrochemical deposition and corrosion resistance characterization of FeCoNiCr high-entropy alloy coatings / Z. Xu, Y. Wang, X. Gao, L. Peng, Q. Qiao, J. Xiao, F. Guo, R. Wang, J. Yu // Coatings. – 2023. – Vol. 13. – P. 1167. – DOI: 10.3390/coatings13071167.



38. Effects of ultrasonic shot peening on the corrosion resistance and antibacterial properties of Al0.3Cu0.5CoCrFeNi high-entropy alloys / X. Chen, T. Cui, S. He, W. Chang, Y. Shi, Y. Lou // Coatings. – 2023. – Vol. 13. – P. 246. – DOI: 10.3390/coatings13020246.



39. Investigation of mechanical and corrosion properties of light and high hardness cast AlTiVCrCu0.4 high entropy alloy / K. Liu, X. Li, J. Wang, Y. Zhang, X. Guo, S. Wu, H. Yu // Materials Characterization. – 2023. – Vol. 200. – DOI: 10.1016/j.matchar.2023.112878.



40. The grain size effect on corrosion property of Al2Cr5Cu5Fe53Ni35 high-entropy alloy in marine environment / L. Xue, Y. Ding, K. Pradeep, R. Case, H. Castaneda, M. Paredes // Corrosion Science. – 2022. – Vol. 208. – DOI: 10.1016/j.corsci.2022.110625.



41. Improved mechanical and corrosion properties of CrMnFeCoNi high entropy alloy with cold rolling and post deformation annealing process / Y. Zou, S. Li, S. Liu, J. Li, Y. Li // Journal of Alloys and Compounds. – 2021. – Vol. 887. – DOI: 10.1016/j.jallcom.2021.161416.



42. Simultaneously increasing mechanical and corrosion properties in CoCrFeNiCu high entropy alloy via friction stir processing with an improved hemispherical convex tool / N. Li, H. Zhang, L. Wu, Z. Li, H. Fu, D. Ni, P. Xue, F. Liu, B. Xiao, Z. Ma // Materials Characterization. – 2023. – Vol. 203. – DOI: 10.1016/j.matchar.2023.113143.



43. Effects of transient thermal shock on the microstructures and corrosion properties of a reduced activation high-entropy alloy / W.-R. Zhang, W.-B. Liao, P.K. Liaw, J.-L. Ren, J. Brechtl, Y. Zhang // Journal of Alloys and Compounds. – 2022. – Vol. 918. – DOI: 10.1016/j.jallcom.2022.165762.



44. Refractory high-entropy alloys: a focused review of preparation methods and properties / W. Xiong, A.X. Guo, S. Zhan, C.T. Liu, S.C. Cao // Journal of Materials Science & Technology. – 2023. – Vol. 142. – P. 196–215. – DOI: 10.1016/j.jmst.2022.08.046.



45. Haché M.J., Zou Y., Erb U. Thermal stability of electrodeposited nanostructured high-entropy alloys // Surface and Coatings Technology. – 2024. – Vol. 474. – P. 130719. – DOI: 10.1016/j.surfcoat.2024.130719.



46. Alloying behavior and thermal stability of mechanically alloyed nano AlCoCrFeNiTi high-entropy alloy / V. Shivam, Y. Shadangi, J. Basu, N.K. Mukhopadhyay // Journal of Materials Research. – 2019. – Vol. 34. – P. 787–795. – DOI: 10.1557/jmr.2019.5.



47. Hardening and thermal stability of a nanocrystalline CoCrFeNiMnTi high-entropy alloy processed by high-pressure torsion / H. Shahmir, M. Nili-Ahmadabadi, A. Shafie, T. Langdon // IOP Conference Series: Materials Science and Engineering. – 2017. – Vol. 194. – DOI: 10.1088/1757-899X/194/1/012017.



48. Влияние замены молибдена на ванадий на склонность к аморфизации, структуру и теплофизические свойства высокоэнтропийных сплавов системы Fe-Co-Ni-Cr-(Mo,V)-B / А.И. Базлов, И.В. Строчко, Е.Н. Занаева, Е.В. Убивовка, М.С. Пархоменко, Д.А. Милькова, В.В. Брюханова // Металлург. – 2023. – № 11. – С. 86–92. – DOI: 10.52351/00260827_2023_11_86.



49. Role of aging temperature on thermal stability of Co-free Cr0.8FeMn1.3Ni1.3 high-entropy alloy: decomposition and embrittlement at intermediate temperatures / H. Sun, T. Liu, H. Oka, N. Hashimoto, Y. Cao, R. Luo // Materials Characterization. – 2024. – Vol. 210. – P. 113804. – DOI: 10.1016/j.matchar.2024.113804.



50. A novel lightweight refractory high-entropy alloy with high specific strength and intrinsic deformability / X. Liu, Z. Bai, X. Ding, J. Yao, L. Wang, Y. Su, Z. Fan, J. Guo // Materials Letters. – 2020. – Vol. 287. – P. 129255. – DOI: 10.1016/j.matlet.2020.129255.



51. High-temperature ultra-strength of dual-phase Re0.5MoNbW(TaC)0.5 high-entropy alloy matrix composite / Q. Wei, G. Luo, R. Tu, J. Zhang, Q. Shen, Y. Cui, Y. Gui, A. Chiba // Journal of Materials Science & Technology. – 2021. – Vol. 84. – P. 1–9. – DOI: 10.1016/j.jmst.2020.12.015.



52. Development of high strength high plasticity refractory high entropy alloy based on Mo element optimization and advanced forming process / H. Zhang, J. Cai, J. Geng, X. Sun, Y. Zhao, X. Guo, D. Li // International Journal of Refractory Metals and Hard Materials. – 2023. – Vol. 112. – DOI: 10.1016/j.ijrmhm.2023.106163.



53. Высокоэнтропийный сплав на основе системы Co-Mo-Nb-Hf с высокой прочностью при 1000 °C / Е.С. Панина, Н.Ю. Юрченко, А. Тожибаев, С.В. Жеребцов, Н.Д. Степанов // Материаловедение, формообразующие технологии и оборудование 2022 (ICMSSTE 2022): материалы Международной научно-практической конференции. – Симферополь, 2022. – С. 128–134. – EDN ZCNRGA.



54. Gradient cell-structured high-entropy alloy with exceptional strength and ductility / Q. Pan, L. Zhang, R. Feng, Q. Lu, K. An, A.C. Chuang, J.D. Poplawsky, P.K. Liaw, L. Lu // Science. – 2021. – Vol. 374. – P. 984–989. – DOI: 10.1126/science.abj8114.



55. Enhanced strength-ductility of CoCrFeMnNi high-entropy alloy with inverse gradient-grained structure prepared by laser surface heat-treatment technique / B. Zhang, J. Chen, P. Wang, B. Sun, Y. Cao // Journal of Materials Science & Technology. – 2021. – Vol. 111. – P. 111–119. – DOI: 10.1016/j.jmst.2021.09.043.



56. Achieving high strength and ductility in high-entropy alloys via spinodal decomposition-induced compositional heterogeneity / Y. Chen, Y. Fang, R. Wang, Y. Tang, S. Bai, Q. Yu // Journal of Materials Science & Technology. – 2023. – Vol. 141. – P. 149–154. – DOI: 10.1016/j.jmst.2022.09.018.



57. Design and coherent strengthening of ultra-high strength refractory high entropy alloys based on laser additive manufacturing / J. Cai, H. Zhang, L. Wang, X. Sun, X. Xu, X. Guo, D. Li // SSRN Electronic Journal. – 2023. – DOI: 10.2139/ssrn.4469753.



58. Jiang D., Xie L., Wang L. Current application status of multi-scale simulation and machine learning in research on high-entropy alloys // Journal of Materials Research and Technology. – 2023. – Vol. 26. – P. 1341. – DOI: 10.1016/j.jmrt.2023.07.233.



59. Вектор развития улучшения свойств ВЭС Кантора / В.Е. Громов, С.В. Коновалов, С. Чен, М.О. Ефимов, И.А. Панченко, В.В. Шляров // Вестник Сибирского государственного индустриального университета. – 2023. – № 2 (44). – С. 3–12. – DOI: 10.57070/2304-4497-2023-2(44)-3-12. – EDN ICZXYP.



60. Machine learning-based strength prediction for refractory high-entropy alloys of the Al-Cr-Nb-Ti-V-Zr system / D. Klimenko, N. Stepanov, J. Li, Q. Fang, S. Zherebtsov // Materials. – 2021. – Vol. 14. – P. 7213. – DOI: 10.3390/ma14237213.



61. Yield strength prediction of high-entropy alloys using machine learning / U. Bhandari, R. Rafi, C. Zhang, S. Yang // Materials Today Communications. – 2020. – Vol. 26. – P. 101871. – DOI: 10.1016/j.mtcomm.2020.101871.



62. Prediction of strength characteristics of high-entropy alloys Al-Cr-Nb-Ti-V-Zr systems / D.N. Klimenko, N.Y. Yurchenko, N.D. Stepanov, S.V. Zherebtsov // Materials Today: Proceedings. – 2021. – Vol. 38. – P. 1535. – DOI: 10.1016/j.matpr.2020.08.145.



63. Li J., Fang Q. Investigation into plastic deformation and machining-induced subsurface damage of high-entropy alloys // Simulation and experiments of material-oriented ultra-precision machining. – Springer, 2019. – P. 23–52. – DOI: 10.1007/978-981-13-3335-4_2.



64. Plasticity of CrMnFeCoNi high-entropy alloy via a purification mechanism / C. Wu, J. Li, W. Qiu, F. Lian, L. Huang, J. Zhu, L. Chen // SSRN Electronic Journal. – 2023. – DOI: 10.2139/ssrn.4415770.



65. Enhanced plasticity in a Zr-rich refractory high-entropy alloy via electron irradiation / J. Hao, Y. Zhang, Q. Wang, Y. Ma, L. Sun, Z. Zhang // Journal of Nuclear Materials. – 2023. – Vol. 590. – DOI: 10.1016/j.jnucmat.2023.154876.



66. Enhanced plasticity in refractory high-entropy alloy via multicomponent ceramic nanoparticle / H. Li, F. Cao, T. Li, Y. Tan, Y. Chen, H. Wang, P.K. Liaw, L. Dai // Journal of Materials Science & Technology. – 2024. – Vol. 194. – P. 51–62. –DOI: 10.1016/j.jmst.2024.01.030.



67. High temperature electrical properties and oxidation resistance of V-Nb-Mo-Ta-W high entropy alloy thin films / Y.-Y. Chen, S.-B. Hung, C.-J. Wang, W.-C. Wei, J.-W. Lee // Surface and Coatings Technology. – 2019. – Vol. 375. – P. 854–863. – DOI: 10.1016/j.surfcoat.2019.07.080.



68. Effects of annealing on microstructure, mechanical and electrical properties of AlCrCuFeMnTi high entropy alloy / Z. Nong, J. Zhu, X. Yang, H. Yu, Z. Lai // Journal of Wuhan University of Technology – Materials Science Edition. – 2013. – Vol. 28. – P. 1196–1200. – DOI: 10.1007/s11595-013-0844-9.



69. Pressure effects on electronic structure and electrical conductivity of TiZrHfNb high-entropy alloy / S. Uporov, R. Ryltsev, V. Sidorov, S.K. Estemirova, E. Sterkhov, I. Balyakin, N. Chtchelkatchev // Intermetallics. – 2022. – Vol. 140. – DOI: 10.1016/j.intermet.2021.107394.



70. Microstructure and mechanical properties of high entropy CrMnFeCoNi alloy processed by electropulsing-assisted ultrasonic surface rolling / J. Xie, S. Zhang, Y. Sun, Y. Hao, B. An, Q. Li, C.A. Wang // Materials Science and Engineering: A. – 2020. – Vol. 795. – P. 140004. – DOI: 10.1016/j.msea.2020.140004.



71. Fabrication of a novel magnetic high entropy alloy with desirable mechanical properties by mechanical alloying and spark plasma sintering / M. Karimi, M. Shamanian, M. Enayati, M. Adamzadeh, M. Imani // Journal of Manufacturing Processes. – 2022. – Vol. 84. – P. 859–870. – DOI: 10.1016/j.jmapro.2022.10.048.



72. Effect of Cr-doping on the structural and magnetic properties of mechanically alloyed FeCoNiAlMnCr high-entropy alloy powder / D.N. Siddiqui, N. Mehboob, A. Zaman, A.M. Alsuhaibani, A. Algahtani, V. Tirth, S. Alharthi, N.H. Al-Shaalan, M.A. Amin // ACS Omega. – 2023. – Vol. 8. – P. 19892. – DOI: 10.1021/acsomega.3c01823.



73. MnxCr0.3Fe0.5Co0.2Ni0.5Al0.3 high entropy alloys for magnetocaloric refrigeration near room temperature / Z. Dong, S. Huang, V. Ström, G. Chai, L.K. Varga, O. Eriksson, L. Vitos // Journal of Materials Science & Technology. – 2021. – Vol. 79. – P. 15–20. – DOI: 10.1016/j.jmst.2020.10.071.



74. Application of high-entropy alloys / V.E. Gromov, Y.A. Shlyarova, S.V. Konovalov, S.V. Vorob'ev, O.A. Peregudov // Izvestiya Ferrous Metallurgy. – 2021. – Vol. 64. – P. 747. – DOI: 10.17073/0368-0797-2021-10-747-754.



75. Перспективы применения высокоэнтропийных сплавов для техники при криогенных температурах / И.И. Сулейманова, М.А. Иванов, А.К. Тиньгаев, Е.А. Трофимов // EURASTRENCOLD-2022: сборник трудов X Евразийского симпозиума по проблемам прочности и ресурса в условиях климатически низких температур, посвященный 100-летию образования ЯАССР и 300-летию Российской академии наук, Якутск, 12–16 сентября 2022 г. – Киров, 2022. – С. 418–422. – EDN TAEIPM.



76. Кадырметов А.М., Попов Д.А., Снятков Е.В. Перспективы применения высокоэнтропийных сплавов для восстановления деталей машин атмосферным плазменным напылением // Мир транспорта и технологических машин. – 2021. – № 1 (72). – С. 20–27. – DOI: 10.33979/2073-7432-2021-72-1-20-27. – EDN DCXPHK.



77. High-entropy alloys for advanced nuclear applications / E.J. Pickering, A.W. Carruthers, P.J. Barron, S.C. Middleburgh, D.E.J. Armstrong, A.S. Gandy // Entropy. – 2021. – Vol. 23. – P. 98. – DOI: 10.3390/e23010098.

Благодарности. Финансирование

Исследование выполнено за счет гранта Российского научного фонда № 23-49-00015, https://rscf.ru/project/23-49-00015/

Для цитирования:

Шуберт А.В., Коновалов С.В., Панченко И.А. Обзор исследований высокоэнтропийных сплавов, их свойств, методов создания и применения // Обработка металлов (технология, оборудование, инструменты). – 2024. – Т. 26, № 4. – С. 153–179. – DOI: 10.17212/1994-6309-2024-26.4-153-179.

For citation:

Shubert A.V., Konovalov S.V., Panchenko I.A. A review of research on high-entropy alloys, its properties, methods of creation and application. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2024, vol. 26, no. 4, pp. 153–179. DOI: 10.17212/1994-6309-2024-26.4-153-179. (In Russian).

Просмотров: 96