Обработка металлов

ОБРАБОТКА МЕТАЛЛОВ

ТЕХНОЛОГИЯ • ОБОРУДОВАНИЕ • ИНСТРУМЕНТЫ
Print ISSN: 1994-6309    Online ISSN: 2541-819X
English | Русский

Последний выпуск
Том 27, № 1 Январь - Март 2025

Получение нанокомпозиционного материала с матрицей на основе алюминиевого сплава Al-7Si методом механического замешивания в стальную литейную форму с переменной толщиной стенок и исследование его характеристик

Том 27, № 1 Январь - Март 2025
Авторы:

Абдельазиз Халед,
Сабер Далия
DOI: http://dx.doi.org/10.17212/1994-6309-2025-27.1-155-171
Аннотация

Введение. Сплав Al-7Si является одним из ключевых алюминиевых сплавов, поскольку обладает удачным сочетанием литейных и механических свойств. Металломатричные композиты (ММК), армированные керамическими частицами, находят широкое применение в высокотехнологичных отраслях, таких как военная, автомобилестроительная, аэрокосмическая и электротехническая промышленность. Целями данного исследования являются: (1) изучение возможности получения композиционных материалов на основе сплава Al-7Si, армированных различным количеством наночастиц TiO2, с применением метода механического замешивания; (2) исследование влияния толщины стенки литейной формы на микроструктуру и механические свойства сплава Al-7Si в процессе затвердевания; (3) анализ влияния содержания армирующего компонента на механические свойства и износостойкость полученных композиционных материалов. Методология. Методом механического замешивания были изготовлены металломатричные композиционные материалы на основе сплава Al-7Si, содержащие 0, 2, 4 и 6 масс. % наночастиц TiO2. Для металлографических и механических испытаний были подготовлены цилиндрические образцы диаметром 15 мм и длиной 18 мм. Результаты и обсуждение. Установлено, что скорость затвердевания возрастает с увеличением толщины стенки литейной формы. Это приводит к росту скорости охлаждения и, как следствие, к формированию более мелкозернистой структуры. Микроструктура отливки демонстрирует изменение размера зерна от мелкого к крупному при переходе от внешней поверхности (прилегающей к внутренней стенке формы) к внутренней части отливки. В связи с этим микротвердость вблизи внутренней стенки формы оказывается выше. Измерения плотности показывают, что композиты с более высокой массовой долей армирующих частиц имеют большую пористость. В то же время результаты испытаний на твердость и износостойкость свидетельствуют о том, что увеличение содержания частиц TiO2 приводит к повышению твердости и значительному снижению скорости изнашивания композиционных материалов.


Ключевые слова: Металломатричные композиты (ММК), толщина стенки литейной формы, наночастицы TiO2, механические свойства

Список литературы

1. Effect of TiB2 nanoparticle content on the microstructure and mechanical properties of TiB2/Mg-4Al-1.5Si composites / J. Liu, X. Chen, W. Wang, Y. Zhao, N. He // Materials. – 2023. – Vol. 16. – P. 2852. – DOI: 10.3390/ma16072852.



2. Nassar A.E., Nassar E.E. Properties of aluminum matrix nano composites prepared by powder metallurgy processing // Journal of King Saud University – Engineering Sciences. – 2017. – Vol. 29 (3). – P. 295–299. – DOI: 10.1016/j.jksues.2015.11.001.



3. Fabrication of Al/A206–Al2O3 nano/micro composite by combining ball milling and stir casting technology / S. Tahamtan, A. Halvaee, M. Emamy, M.S. Zabihi // Materials and Design. – 2013. – Vol. 49. – P. 347–359.



4. Soltani M.A., Jamaati R., Toroghinejad M.R. The influence of TiO2 nano particles on bond strength of cold roll bonded aluminum strips // Materials Science and Engineering: A. – 2012. – Vol. 550. – P. 367–374.



5. Saber D., Taha I.B.M., Abd El-Aziz Kh. Wear behavior prediction for Cu/TiO2 nanocomposite based on optimal regression methods // Materials Research. – 2023. – Vol. 26. – P. e20220263.



6. Effect of cooling rate on microstructure and properties of SiCP/A359 composites / Z. Jin, L. Jia, W. Wang, Y. Liu, Y. Qi, H. Zhang // Materials & Design. – 2023. – Vol. 234. – P. 112297.



7. Megahed M., Saber D., Agwа M.A. Modeling of wear behavior of Al-Si/Al2O3 metal matrix composites // Physics of Metals and Metallography. – 2019. – Vol. 120 (10). – P. 981–988.



8. Shet V.S., Mahadev U.M. Investigation on tribological behavior of metal matrix composites (Al6063-TiO2) // International Journal of Recent Engineering Research and Development (IJRERD). – 2017. – Vol. 2 (8). – P. 117–148.



9. Corrosive wear of alumina particles reinforced Al–Si alloy composites / D. Saber, Kh. Abd El-Aziz, R. Abdel-Karim, A.A. Kandel // Physics of Metals and Metallography. – 2020. – Vol. 121 (2). – P. 197–203.



10. Development of Al–Mg–Si alloy performance by addition of grain refiner Al–5Ti–1B alloy / Kh. Abd El-Aziz, E.M. Ahmed, A.H. Alghtani, B.F. Felemban, H.T. Ali, M. Megahed, D. Saber // Science Progress. – 2021. – Vol. 104 (2). – DOI: 10.1177/00368504211029469.



11. The influence of TiO2 nanoparticles on the mechanical properties and microstructure of AA2024 aluminium alloy / H.M. Mahan, S.V. Konovalov, K. Osintsev, I. Panchenko // Materials and Technology. – 2023. – Vol. 57 (4). – P. 379–384.



12. Mg-based metal matrix composite in biomedical applications: a review / S. Mohanasundaram, M. Bhong, G. Vatsa, R.P. Verma, M. Srivastava, G. Kumar, K.A. Mohammed, D. Singh, L.R. Gupta // Materials Today: Proceedings. – 2023. – DOI: 10.1016/j.matpr.2023.03.043.



13. Hossein-Zadeh M., Mirzaee O., Saidi P. Structural and mechanical characterization of Al-based composite reinforced with heat treated Al2O3 particles // Materials and Design. – 2014. – Vol. 54. – P. 245–250.



14. Characterization and performance evaluation of Cu-based/TiO2 nano composites / D. Saber, Kh. Abd El-Aziz, B.F. Felemban, A.H. Alghtani, H.T. Ali, E.M. Ahmed, M. Megahed // Scientific Reports. – 2022. – Vol. 12 (1). – P. 6669.



15. Effect of nano-TiO2 particles addition on dissimilar AA2024 and AA2014 based composite developed by friction stir process technique / S.P. Dwivedi, S. Sharma, Ch. Li, Y. Zhang, A. Kumar, R. Singh, S.M. Eldin, M. Abbas // Journal of Materials Research and Technology. – 2023. – Vol. 26. – P. 1872–1881.



16. Al-Jaafari M.A.A. Study the effects of titanium dioxide nanoparticles reinforcement on the mechanical properties of aluminum alloys composite // IOP Conference Series. Materials Science and Engineering. – 2021. – Vol. 1105. – P. 012062.



17. A critical review of fabrication routes and their effects on mechanical properties of AMMCs / J. Lade, K.A. Mohammed, D. Singh, R.P. Verma, P. Math, M. Saraswat, L.R. Gupta // Materials Today: Proceedings. – 2023. – DOI: 10.1016/j.matpr.2023.03.041.



18. Dewangan S., Ganguly S.K., Banchhor R. Analysis of Al 6061–TiO2–CNT metal matrix composites produced by stir casting process // International Journal of Engineering and Management Research. – 2018. – Vol. 8. – P. 147–152.



19. Atta M., Megahed M., Saber D. Using ANN and OA techniques to determine the specific wear rate effectors of A356 Al-Si/Al2O3 MMC // Neural Computing & Applications. – 2022. – Vol. 34. – P. 14373–14386. – DOI: 10.1007/s00521-022-07215-3.



20. Effect of La on the wettability of Al2O3 by molten aluminum / N. Shao, J.W. Dai, G.Y. Li, T. Hane // Materials Letters. – 2004. – Vol. 58 (14). – P. 2041–2044.



21. Abd El-Aziz Kh. Mechanical properties improvements of the materials used in manufacturing of food processing equipment’s and containers using different techniques // Asian Journal of Applied Science and Technology. – 2023. – Vol. 7 (4). – P. 156–175.



22. Saber D., Taha I.B.M., Abd El-Aziz Kh. Prediction of the corrosion rate of Al–Si alloys using optimal regression methods // Intelligent Automation & Soft Computing. – 2021. – Vol. 29 (3). – P. 757–769. – DOI: 10.32604/iasc.2021.018516.



23. Gorny A., Tyrala E. Effect of cooling rate on microstructure and mechanical properties of thin-walled ductile iron castings // Journal of Materials Engineering and Performance. – 2013. – Vol. 22. – P. 300–305.



24. Influence of casting mould wall thickness on the properties and microstructure of A356 alloy reinforced with micro/nanoalumina particles / Kh. Abd El-Aziz, A.A. Abo El-Nasr, A. Elfasakhany, D. Saber, M. Helal // Arctic Journal. – 2018. – Vol. 71 (7). – P. 26–39.



25. Ashwath P., Xavior M.A. Compression and diametral tensile strength analysis of graphene–Al2O3 reinforced AA 2024 and AA 2219 hybrid nanocomposites // Advances in Micro and Nano Manufacturing and Surface Engineering. – Singapore: Springer, 2019. – P. 19–32.



26. Role of CNT in influencing the mechanical properties of the Mg-based composites: an overview / B. Chandrasekhar, A. Dharme, S. Kumar Sharma, R. Taluja, O.A. Jarali, R. Kalra, G. Kumar // Materials Today: Proceedings. – 2023. – DOI: 10.1016/j.matpr.2023.02.385.



27. Effect of mould wall thickness on rate of solidification of centrifugal casting / Madhusudhan, S. Narendranaath, G.C. Mohankumar, P.G. Mukunda // International Journal of Engineering Science and Technology. – 2010. – Vol. 2 (11). – P. 6092–6096.



28. On influence of Ti and Sr on microstructure, mechanical properties and quality index of cast eutectic Al–Si–Mg alloy / S. Haro-Rodríguez, R.E. Goytia-Reyes, R. Goytia, K.D. Dheerendra // Materials & Design. – 2011. – Vol. 32. – P. 1865–1871.



29. Microstructural characterization of recycled Al–Mg–Si-based alloys upon the synergistic effect of ultrasonic technology (UT) and novel refiners / Q. He, G. Zhang, S. Zhang, D. Teng, H. Jia, J. Li, R. Guan // Journal of Materials Research and Technology. – 2024. – Vol. 31. – P. 481–495.



30. Hamasaiid A., Dargusch M.S., Dour G. The impact of the casting thickness on the interfacial heat transfer and solidification of the casting during permanent mold casting of an A356 alloy // Journal of Manufacturing Processes. – 2019. – Vol. 47. – P. 229–237.



31. Effect of cooling rate on microstructure and mechanical properties in Al-Si alloys / S.B. Kang, J. Zhang, S. Wang, J. Cho, V.U. Stetsenko // Proceedings of the 12th International Conference on Aluminium Alloys, Yokohama, Japan. – The Japan Institute of Light Metals, 2010. – P. 675–680.



32. Effect of mould sand type and casting wall thickness on properties and microstructure of multivariate Al–7·5Si–4Cu alloy / G.L. Liu, N.C. Si, S.C. Sun, Q.F. Wu // Materials Research Innovations. – 2013. – Vol. 17, suppl. 1. – P. 246–250. – DOI: 10.1179/1432891713Z.000000000224.



33. Study of the effect of hafnium and erbium content on the formation of microstructure in aluminium alloy 1590 cast into a copper chill mold / A.A. Ragazin, V.Yu. Aryshensky, S.V. Konovalov, E.V. Aryshenskii, I. Bakhtegareev // Metal Working and Material Science. – 2024. – Vol. 26 (1). – P. 99–112.



34. Liu X., Zhao Q., Jiang Q. Effects of cooling rate and TiC nanoparticles on the microstructure and tensile properties of an AleCu cast alloy // Materials Science & Engineering: A. – 2020. – Vol. 790. – P. 139737.



35. The control of NbB2 particles in Al-NbB2 master alloy and its effect on grain refinement of AZ91 magnesium alloy / W. Fan, Y. Bai, G. Zuo, H. Hao // Materials Science & Engineering: A. – 2022. – Vol. 854. – P. 143808.



36. Relationship between cooling rate, microstructure evolution, and performance improvement of an AleCu alloy prepared using different methods / C. He, W. Yu, Y. Li, Z. Wang, D. Wu, G. Xu // Materials Research Express. – 2020. – Vol. 7 (11). – P. 116501.



37. The role of cooling rate on microstructure in a sand-cast Al-Cu-Ag alloy containing high amounts of TiB2 / L. Ravkov, B. Diak, M. Gallerneault, P. Clark, G. Marzano // Canadian Metallurgical Quarterly. – 2021. – Vol. 60 (2). – P. 57–65.



38. Grain refining performance of Al-B master alloys with different microstructures on Al-7Si alloy / T.M. Wang, Z.N. Chen, H.W. Fu, T.J. Li // Metals and Materials International. – 2013. – Vol. 19 (2). – P. 367–370.



39. Effect of high cooling rate on the solidification microstructure of Al-Cu/TiB2 alloy fabricated by freeze-ablation casting / X. Kong, Y. Wang, H. Fan, J. Wu, H. Xu, H. Mao // Journal of Materials Research and Technology. – 2023. – Vol. 25. – P. 593–607.



40. Dewangan R., Sharma B.P., Sharma S.S. Investigation of hardness behavior in aluminum matrix composites reinforced with coconut shell ash and red mud using Taguchi analysis // Metal Working and Material Science. – 2024. – Vol. 26 (3). – P. 179–191.



41. Effect of reinforcement concentration on the properties of hot extruded Al-Al2O3 composites synthesized through microwave sintering process / M.P. Reddy, F. Ubaid, R.A. Shakoor, G. Parande, V. Manakari, A.M.A. Mohamed, M. Gupta // Materials Science & Engineering: A. – 2017. – Vol. 696. – P. 60–69.



42. Advanced metal matrix nanocomposites / M. Malaki, W. Xu, A.K. Kasar, P.L. Menezes, H. Dieringa, R.S. Varma, M. Gupta // Metals. – 2019. – Vol. 9 (3). – P. 330.



43. Kok M. Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites // Journal of Materials Processing Technology. – 2005. – Vol. 161 (3). – P. 381–387.



44. Study of microstructural and mechanical properties of Al/SiC/TiO2 hybrid nanocomposites developed by microwave sintering / M.R. Mattli, P.R. Matli, A. Khan, R.H. Abdelatty, M. Yusuf, A.A. Ashraf, R.G. Kotalo, R.A. Shakoor // Crystals. – 2021. – Vol. 11. – P. 1078. – DOI: 10.3390/cryst11091078.



45. Golnaz N.A., Arvin T.T., Aghajani H. Investigation on corrosion behavior of Cu–TiO2 nanocomposite synthesized by the use of SHS method // Journal of Material Research and Technology. – 2019. – Vol. 8 (2). – P. 2216–2222.



46. Walker J.C., Rainforth W.M., Jones H. Lubricated sliding wear behaviour of aluminium alloy composites // Wear. – 2005. – Vol. 259. – P. 577–589.



47. Khandoori G., Mer K.K.S., Chandraveer Singh. Sliding behaviour of aluminium metal matrix composite reinforced with TiO2 // International Journal of Resent Scientific Research. – 2015. – Vol. 6 (5). – P. 4197–4203.



48. Photocatalytic TiO2-based nanostructures as a promising material for diverse environmental applications: a review / M.-A. Gatou, A. Syrrakou, N. Lagopati, E.A. Pavlatou // Reactions. – 2024. – Vol. 5. – P. 135–194. – DOI: 10.3390/reactions5010007.



49. Antony Vasantha Kumar C., Selwin Rajadurai J. Influence of rutile (TiO2) content on wear and microhardness characteristics of aluminium-based hybrid composites synthesized by powder metallurgy // Transactions of Nonferrous Metals Society of China. – 2016. – Vol. 26 (1). – P. 63–73. – DOI: 10.1016/S1003-6326(16)64089-X.



50. Wear, optimization and surface analysis of Al-Al2O3-TiO2 hybrid metal matrix composites / N. Ahamad, A. Mohammad, K.K. Sadasivuni, P. Gupta // Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. – 2021. – Vol. 235 (1). – P. 93–102. – DOI: 10.1177/1350650120970432.

Для цитирования:

Абдельазиз Х., Сабер Д. Получение нанокомпозиционного материала с матрицей на основе алюминиевого сплава Al-7Si методом механического замешивания в стальную литейную форму с переменной толщиной стенок и исследование его характеристик // Обработка металлов (технология, оборудование, инструменты). – 2025. – Т. 27, № 1. – С. 155–171. – DOI: 10.17212/1994-6309-2025-27.1-155-171.

For citation:

Abdelaziz K., Saber D. Fabrication and characterization of Al-7Si alloy matrix nanocomposite by stir casting technique using multi-wall thickness steel mold. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2025, vol. 27, no. 1, pp. 155–171. DOI: 10.17212/1994-6309-2025-27.1-155-171. (In Russian).

Просмотров: 108