Введение. В настоящем исследовании рассматриваются научно-исследовательские и опытно-конструкторские работы (НИОКР), направленные на разработку безасбестовых фрикционных композиционных материалов для тормозных систем (ФКТС) с целью повышения безопасности и эффективности работы автомобильных тормозных систем. Изучена эволюция ФКТС от материалов на основе асбеста к более безопасным заменителям и проведен анализ с целью разработки альтернативных комбинаций. Подчеркнута важная роль основных компонентов – волокон, связующих, модификаторов трения и наполнителей – в создании долговечных фрикционных композиционных материалов тормозных систем. Композиционный материал на основе базальтового волокна с наполнителем из карбоната кальция сравнивается с композиционным материалом на основе арамидного волокна с наполнителем из сульфата бария посредством оценки на испытательном стенде по схеме трения «штифт – диск». На основании результатов испытаний установлено, что альтернативные композиционные материалы перспективны для применения в тормозных системах. Настоящая работа предоставляет основу для дальнейшей разработки экологически чистых фрикционных композитов тормозных систем путем выбора оптимальных составов, а также определяет подход к последующим исследованиям, которые будут проводиться с целью изменения компонентов и их соотношения при создании композиционных материалов. Это исследование поможет в дальнейшем улучшить функциональность тормозных систем в автомобилях. Цель работы: данное исследование направлено на разработку безасбестовых фрикционных композиционных материалов для тормозных систем (ФКТС) с целью повышения безопасности и эффективности работы автомобильных тормозных систем. Исследуются экологически чистые альтернативы асбесту, анализируются роли волокон, связующих, модификаторов трения и наполнителей. Целью исследования является определение оптимальных составов для создания прочных, экологически безопасных тормозных материалов, открывающих путь для дальнейшего внедрения инновационных решений в практику. Методы исследования: для оценки износа, трения и долговечности, а также оценки пригодности разрабатываемых материалов с целью использования в тормозных системах применяется метод трения по схеме «штифт – диск». Исследование посвящено анализу влияния компонентов (волокон, связующих, модификаторов трения и наполнителей) на свойства фрикционных композиционных материалов тормозных систем. Экспериментально изучены два состава: базальтовое волокно с карбонатом кальция и арамидное волокно с сульфатом бария. Результаты и обсуждение: результаты исследования свидетельствуют об эффективности использования базальтового волокна с карбонатом кальция и арамидного волокна с сульфатом бария в качестве компонентов фрикционных композитов тормозных систем. Показано, что данные материалы обеспечивают высокие показатели износостойкости и фрикционных характеристик. Подчеркивается потенциал дальнейшей оптимизации составов для повышения экологичности и улучшения эксплуатационных свойств тормозных систем. Полученные результаты также подчеркивают важность выбора компонентов для разработки безопасных и экологически устойчивых фрикционных композитов.
1. Tribological performance of brass powder with different copper and zinc content in the brake pad / K.A. Ahmed, S.R. Mohideen, M.A.S. Balaji, B.S. Rajan // Tribology in Industry. – 2020. – Vol. 42 (2). – P. 177–190. – DOI: 10.24874/ti.783.10.19.03.
2. Study of the interaction between microstructure, mechanical and tribo-performance of a commercial brake lining material / A. Sellami, M. Kchaou, R. Elleuch, A.-L. Cristol, Y. Desplanques // Materials & Design. – 2014. – Vol. 59. – P. 84–93. – DOI: 10.1016/j.matdes.2014.02.025.
3. Österle W., Dmitriev A.I. The role of solid lubricants for brake friction materials // Lubricants. – 2016. – Vol. 4 (1). – P. 5. – DOI: 10.3390/lubricants4010005.
4. Effect of material selection and surface texture on tribological properties of key friction pairs in water hydraulic axial piston pumps: a review / Y. Liang, W. Wang, Z. Zhang, H. Xing, C. Wang, Z. Zhang, T. Guan, D. Gao // Lubricants. – 2023. – Vol. 11 (8). – P. 324. – DOI: 10.3390/lubricants11080324.
5. Kumar M., Bijwe J. Studies on reduced scale tribometer to investigate the effects of metal additives on friction coefficient – temperature sensitivity in brake materials // Wear. – 2010. – Vol. 269 (11–12). – P. 838–846. – DOI: 10.1016/j.wear.2010.08.012.
6. Saffar A., Shojaei A., Arjmand M. Theoretical and experimental analysis of the thermal, fade and wear characteristics of rubber-based composite friction materials // Wear. – 2010. – Vol. 269 (1–2). – P. 145–151. – DOI: 10.1016/j.wear.2010.03.021.
7. Aranganathan N., Mahale V., Bijwe J. Effects of aramid fiber concentration on the friction and wear characteristics of non-asbestos organic friction composites using standardized braking tests // Wear. – 2016. – Vol. 354. – P. 69–77. – DOI: 10.1016/j.wear.2016.03.002.
8. McElheny D., Frydman V., Frydman L. A solid-state 13C NMR analysis of molecular dynamics in aramid polymers // Solid State Nuclear Magnetic Resonance. – 2006. – Vol. 29 (1–3). – P. 132–141. – DOI: 10.1016/j.ssnmr.2005.08.010.
9. Prasad V.V., Talupula S. A review on reinforcement of basalt and aramid (Kevlar 129) fibers // Materials Today: Proceedings. – 2018. – Vol. 5 (2). – P. 5993–5998. – DOI: 10.1016/j.matpr.2017.12.202.
10. Review on the friction and wear of brake materials / X. Xiao, Y. Yin, J. Bao, L. Lu, X. Feng // Advances in Mechanical Engineering. – 2016. – Vol. 8 (5). – DOI: 10.1177/1687814016647300.
11. Kumar M., Bijwe J. Composite friction materials based on metallic fillers: sensitivity of μ to operating variables // Tribology International. – 2011. – Vol. 44 (2). – P. 106–113. – DOI: 10.1016/j.triboint.2010.09.013.
12. Kumar M., Bijwe J. NAO friction materials with various metal powders: tribological evaluation on full-scale inertia dynamometer // Wear. – 2010. – Vol. 269 (11–12). – P. 826–837. – DOI: 10.1016/j.wear.2010.08.011.
13. Bachchhav B.D., Hendre K.N. Wear performance of asbestos-free brake pad materials // Jordan Journal of Mechanical & Industrial Engineering. – 2022. – Vol. 16 (4). – P. 459–469.
14. Prabhu T.R. Effect of bimodal size particles reinforcement on the wear, friction and mechanical properties of brake composites // Tribology-Materials, Surfaces & Interfaces. – 2016. – Vol. 10 (4). – P. 163–171. – DOI: 10.1080/17515831.2016.1262587.
15. Performance assessment of phenolic-based non-asbestos organic brake friction composite materials with different abrasives / T. Singh, A. Patnaik, R. Chauhan, I. Bíró, E. Jánosi, G. Fekete // Acta Polytechnica Hungarica. – 2020. – Vol. 17 (5). – P. 49–67. – DOI: 10.12700/APH.17.5.2020.5.3.
16. The role of graphitic carbon nitride in the formulation of copper-free friction composites designed for automotive brake pads / V. Matejka, M. Leonardi, P. Praus, G. Straffelini, S. Gialanella // Metals. – 2022. – Vol. 12 (1). – P. 123. – DOI: 10.3390/met12010123.
17. Effect of space fillers in brake friction composites on airborne particle emission: a case study with BaSO4, Ca(OH)2, and CaCO3 / J. Park, J. Gweon, H. Seo, W. Song, D. Lee, J. Choi, Y.C. Kim, H. Jang // Tribology International. – 2022. – Vol. 165. – P. 107334. – DOI: 10.1016/j.triboint.2021.107334.
18. Prediction of wear rate of glass-filled PTFE composites based on machine learning approaches / A.R. Deshpande, A.P. Kulkarni, N. Wasatkar, V. Gajalkar, M. Abdullah // Polymers. – 2024. – Vol. 16 (18). – P. 2666. – DOI: 10.3390/polym16182666.
19. Влияние направления печати на характер износа PLA-биоматериала, полученного методом FDM: исследование для имплантата тазобедренного сустава / Й.Б. Дама, Б.Ф. Джоги, Р. Паваде, А.П. Кулкарни // Обработка металлов (технология, оборудование, инструменты). – 2024. – Т. 26, № 4. – С. 19–40. – DOI: 10.17212/1994-6309-2024-26.4-19-40.
20. Hendre K., Bachchhav B. Tribological behavior of non-asbestos brake pad material // Materials Today: Proceedings. – 2021. – Vol. 38. – P. 2549–2554. – DOI: 10.1016/j.matpr.2020.07.560.
21. Mechanical and wear behavior of LM25 aluminium matrix hybrid composite reinforced with boron carbide, graphite and iron oxide / V. Suresh, P. Vikram, R. Palanivel, R.F. Laubscher // Materials Today: Proceedings. – 2018. – Vol. 5 (14). – P. 27852–27860. – DOI: 10.1016/j.matpr.2018.10.023.
22. Sethupathi P.B., Chandradass J., Saibalaji M.A. Comparative study of disc brake pads sold in Indian market – impact on safety and environmental aspects // Environmental Technology & Innovation. – 2021. – Vol. 21. – P. 101245. – DOI: 10.1016/j.eti.2020.101245.
23. Chowdhury I.R., Pemberton R., Summerscales J. Developments and industrial applications of basalt fibre reinforced composite materials // Journal of Composites Science. – 2022. – Vol. 6 (12). – P. 367. – DOI: 10.3390/jcs6120367.
24. Effect of basalt fibers for reinforcing resin-based brake composites / X. Zhao, J. Ouyang, H. Yang, Q. Tan // Minerals. – 2020. – Vol. 10 (6). – P. 490. – DOI: 10.3390/min10060490.
25. Influence of binder on thermomechanical and tribological performance in brake pad / B.S. Rajan, M.A.S. Balaji, K. Sathickbasha, P. Hariharasakthisudan // Tribology in Industry. – 2018. – Vol. 40 (4). – P. 654–669. – DOI: 10.24874/ti.2018.40.04.12.
26. High frictional stability of braking material reinforced by basalt fibers / K. Yu, X. Shang, X. Zhao, L. Fu, X. Zuo, H. Yang // Tribology International. – 2023. – Vol. 178. – P. 108048. – DOI: 10.1016/j.triboint.2022.108048.
Кейт Н., Кулкарни А.П., Дама Й.Б. Сравнительная оценка трения и износа альтернативных материалов, используемых для производства фрикционных композиционных материалов тормозных систем // Обработка металлов (технология, оборудование, инструменты). – 2025. – Т. 27, № 2. – С. 29–42. – DOI: 10.17212/1994-6309-2025-27.2-29-42.
Kate N., Kulkarni A.P., Dama Y.B. A comparative evaluation of friction and wear in alternative materials for brake friction composites. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2025, vol. 27, no. 2, pp. 29–42. DOI: 10.17212/1994-6309-2025-27.2-29-42. (In Russian).