Список литературы
1. Electrical discharge machining of nickel-based superalloys: a comprehensive review / P. Sharma, K. Kishore, M.K. Sinha, V. Singh // International Journal of Materials Engineering Innovation. – 2022. – Vol. 13 (3). – P. 157–190. – DOI: 10.1504/IJMATEI.2022.125119.
2. Principles and characteristics of different EDM processes in machining tool and die steels / J.E.A. Qudeiri, A. Zaiout, A.H.I. Mourad, M.H. Abidi, A. Elkaseer // Applied Sciences. – 2020. – Vol. 10 (6). – P. 2082. – DOI: 10.3390/app10062082.
3. Philip J.T., Mathew J., Kuriachen B. Transition from EDM to PMEDM–impact of suspended particulates in the dielectric on Ti6Al4V and other distinct material surfaces: a review // Journal of Manufacturing Processes. – 2021. – Vol. 64. – P. 1105–1142. – DOI: 10.1016/j.jmapro.2021.01.056.
4. Wire electrical discharge machining – a review / L. Slatineanu, O. Dodun, M. Coteata, G. Nagît, I. B. Bancescu, A. Hrituc // Machines. – 2020. – Vol. 8 (4). – P. 69. – DOI: 10.3390/machines8040069.
5. Recent trends and developments in the electrical discharge machining industry: a review / A.A. Kamenskikh, K.R. Muratov, E.S. Shlykov, S.S. Sidhu, A. Mahajan, Y.S. Kuznetsova, T.R. Ablyaz // Journal of Manufacturing and Materials Processing. – 2023. – Vol. 7 (6). – P. 204. – DOI: 10.3390/jmmp7060204.
6. Electrical discharge machining parameters and dielectric fluid: a review / B. Gugulothu, N. Aravindan, G. Widjaja, S.A. Lakshmanan, M. Suresh // Handbook of Research on Advanced Functional Materials for Orthopedic Applications. – 2023. – Vol. 137–147. – DOI: 10.4018/978-1-6684-7412-9.ch008.
7. Reviewing performance measures of the die-sinking electrical discharge machining process: challenges and future scopes / R.K. Shastri, C.P. Mohanty, S. Dash, K.M.P. Gopal, A.R. Annamalai, C.-P. Jen // Nanomaterials. – 2022. – Vol. 12 (3). – P. 384. – DOI: 10.3390/nano12030384.
8. Goyal A., Pandey A., Rahman H.U. Present and future prospective of shape memory alloys during machining by EDM/wire EDM process: a review // Sadhana. – 2022. – Vol. 47 (4). – P. 217. – DOI: 10.1007/s12046-022-01999-9.
9. Jatti V.S. Multi-characteristics optimization in EDM of NiTi alloy, NiCu alloy and BeCu alloy using Taguchi’s approach and utility concept // Alexandria Engineering Journal. – 2018. – Vol. 57 (4). – P. 2807–2817. – DOI: 10.1016/j.aej.2017.11.004.
10. Effects of process parameters on the machining process in die-sinking EDM of alloyed tool steel / M.M. Bahgat, A.Y. Shash, M. Abd-Rabou, I.S. El-Mahallawi // Engineering Design Applications III: Structures, Materials and Processes. – Springer, 2020. – P. 215–233. – DOI: 10.1007/978-3-030-39062-4_19.
11. Multi-objective optimization for electric discharge drilling of waspaloy: a comparative analysis of NSGA-II, MOGA, MOGWO, and MOPSO / P.P. Harane, D.R. Unune, R. Ahmed, S. Wojciechowski // Alexandria Engineering Journal. – 2024. – Vol. 99. – P. 1–16. – DOI: 10.1016/j.aej.2024.04.049.
12. Surface integrity in metal machining – Part I: Fundamentals of surface characteristics and formation mechanisms / Z. Liao, A. la Monaca, J. Murray, A. Speidel, D. Ushmaev, A. Clare, D. Axinte, R. M’Saoubi // International Journal of Machine Tools and Manufacture. – 2021. – Vol. 162. – P. 103687. – DOI: 10.1016/j.ijmachtools.2020.103687.
13. Ishfaq K., Farooq M.U., Pruncu C.I. Reducing the geometrical machining errors incurred during die repair and maintenance through electric discharge machining (EDM) // The International Journal of Advanced Manufacturing Technology. – 2021. – Vol. 117 (9). – P. 3153–3168. – DOI: 10.1007/s00170-021-07846-1.
14. The versatility of the Taguchi method: Optimizing experiments across diverse disciplines / M.W. Hisam, A.A. Dar, M.O. Elrasheed, M.S. Khan, R. Gera, I. Azad // Journal of Statistical Theory and Applications. – 2024. – Vol. 23 (4). – P. 365–389. – DOI: 10.1007/s44199-024-00093-9.
15. Optimization of PMEDM process parameters for B4C and B4C+SiC reinforced AA7075 composites / G. Keskin, S. Salunkhe, G. Küçüktürk, M. Pul, H. Gürün, V. Baydarogl // Journal of Engineering Research. – 2025. – Vol. 13 (1). – P. 47–56. – DOI: 10.1016/j.jer.2023.09.012.
16. Multi-performance optimization in electrical discharge machining of Al2O3 ceramics using Taguchi base AHP weighted TOPSIS method / Y.-P. Zeng, C.-L. Lin, H.-M. Dai, Y.-C. Lin, J.-C. Hung // Processes. – 2021. – Vol. 9 (9). – P. 1647. – DOI: 10.3390/pr9091647.
17. Sahoo S.K., Thirupathi N., Saraswathamma K. Experimental investigation and multi-objective optimization of die sink EDM process parameters on Inconel-625 alloy by using utility function approach // Materials Today: Proceedings. – 2020. – Vol. 24. – P. 995–1005. – DOI: 10.1016/j.matpr.2020.04.412.
18. Experimental analysis and optimization of EDM parameters on HcHcr steel in context with different electrodes and dielectric fluids using hybrid Taguchi-based PCA-utility and CRITIC-utility approaches / M. Patel Gowdru Chandrashekarappa, S. Kumar, J. Jagadish, D.Y. Pimenov, K. Giasin // Metals. – 2021. – Vol. 11 (3). – P. 419. – DOI: 10.3390/met11030419.
19. Machining of shape-memory alloys using electrical discharge machining with an elaborate study of optimization approaches: a review / S. Dutta, A.K. Singh, B. Paul, M.K. Paswan // Journal of the Brazilian Society of Mechanical Sciences and Engineering. – 2022. – Vol. 44 (11). – P. 557. – DOI: 10.1007/s40430-022-03826-y.
20. Singh R., Singh R.P., Trehan R. Machine learning algorithms based advanced optimization of EDM parameters: an experimental investigation into shape memory alloys // Sensors International. – 2022. – Vol. 3. – P. 100179. – DOI: 10.1016/j.sintl.2022.100179.
21. Machinability assessment of shape memory alloy nitinol during WEDM operation: application potential of Taguchi based AHP–DFA technique / H. Majumder, A. Khan, D.K. Naik, C.S. Kumar // Surface Review and Letters. – 2022. – Vol. 29 (01). – P. 2250002. – DOI: 10.1142/S0218625X22500020.
22. Gupta D.K., Dubey A.K. Multi process parameters optimization of Wire-EDM on shape memory alloy (Ni54.1Ti) using Taguchi approach // Materials Today: Proceedings. – 2021. – Vol. 44. – P. 1423–1427. – DOI: 10.1016/j.matpr.2020.11.628.
23. Gangele A., Mishra A. Surface roughness optimization during machining of NiTi shape memory alloy by EDM through Taguchi’s technique // Materials Today: Proceedings. – 2020. – Vol. 29. – P. 343–347. – DOI: 10.1016/j.matpr.2020.07.287.
24. Multi-objective optimization of electrical discharge machining process during machining of NiTi alloy using Taguchi and utility concept / V.S. Gaikwad, V.S. Jatti, P.J. Pawar, K.N. Nandurkar // Techno-Societal 2018: Proceedings of the 2nd International Conference on Advanced Technologies for Societal Applications. – Springer International Publishing, 2020. – Vol. 2. – P. 479–489. – DOI: 10.1007/978-3-030-16962-6_49.
25. Determination of the optimum conditions for machining NiTi shape memory alloys by electrical discharge machining / S. Güven, M. Yilmaz, H. Gökkaya, E. Nas // Journal of the Institution of Engineers (India): Series C. – 2024. – Vol. 105 (5). – P. 1035–1046. – DOI: 10.1007/s40032-024-01099-z.
26. Analysis of surface roughness and flank wear using the Taguchi method in milling of NiTi shape memory alloy with uncoated tools / E. Altas, H. Gokkaya, M. Karatas, D. Ozkan // Coatings. – 2020. – Vol. 10 (12). – P. 1259. – DOI: 10.3390/coatings10121259.
27. Singh R., Singh R.P., Trehan R. State of the art in processing of shape memory alloys with electrical discharge machining: a review // Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. – 2021. – Vol. 235 (3). – P. 333–366. – DOI: 10.1177/0954405420958771.
28. Saoud F.B., Korkmaz M.E. A review on machinability of shape memory alloys through traditional and non-traditional machining processes: a review // Imalat Teknolojileri ve Uygulamalar?. – 2022. – Vol. 3 (1). – P. 14–32. – DOI: 10.52795/mateca.1080941.
29. Al-Mousawi M.A., Al-Shafaie S.H., Khulief Z.T. Modeling and analysis of process parameters in EDM of Ni35Ti35Zr15Cu10Sn5 high-temperature high entropy shape memory alloy by RSM approach // Manufacturing Review. – 2024. – Vol. 11. – P. 4. – DOI: 10.1051/mfreview/2024002.
30. Gaikwad V., Jatti V.S. Optimization of material removal rate during electrical discharge machining of cryo-treated NiTi alloys using Taguchi’s method // Journal of King Saud University – Engineering Sciences. – 2018. – Vol. 30 (3). – P. 266–272. – DOI: 10.1016/j.jksues.2016.04.003.
31. Surface roughness and surface crack length prediction using supervised machine learning-based approach of electrical discharge machining of deep cryogenically treated NiTi, NiCu, and BeCu alloys / D.A. Sawant, V.S. Jatti, A. Mishra, E.M. Sefene, A.V. Jatti // The International Journal of Advanced Manufacturing Technology. – 2023. – Vol. 128 (11–12). – P. 5595–5612. – DOI: 10.1007/s00170-023-12269-1.
32. Jatti V.S., Singh T.P. Optimization of tool wear rate during electrical discharge machining of advanced materials using Taguchi analysis // WSEAS Transactions on Applied and Theoretical Mechanics. – 2016. – Vol. 11. – P. 44–53.
33. Исследование электроэрозионной обработки криогенно обработанных бериллиево-медных сплавов (BeCu) / Д. Савант, Р. Булах, В. Джатти, С. Чинчаникар, А. Мишра, Э.М. Сефене // Обработка металлов (технология, оборудование, инструменты). – 2024. – Т. 26, № 1. – С. 175–193. – DOI: 10.17212/1994-6309-2024-26.1-175-193.
34. Bagane S., Jatti V.S., Singh T.P. Machinability study of beryllium copper by powder mixed electric discharge machining // Applied Mechanics and Materials. – 2015. – Vol. 787. – P. 376–380. – DOI: 10.4028/www.scientific.net/AMM.787.376.
35. Sankar V., Arravind R., Manikandan D. Material synthesis, characterization, and machining performance of stir cast beryllium copper alloy composites // Transactions of the Canadian Society for Mechanical Engineering. – 2018. – Vol. 43 (2). – P. 143–152. – DOI: 10.1139/tcsme-2018-0103.
36. Investigating the effect of cryogenic treatment of workpieces and tools on electrical discharge machining performance / V.S. Jatti, N.K. Khedkar, V.S. Jatti, P. Dhall // AIMS Materials Science. – 2022. – Vol. 9 (6). – DOI: 10.3934/matersci.2022051.