Obrabotka metallov

OBRABOTKA METALLOV

METAL WORKING AND MATERIAL SCIENCE
Print ISSN: 1994-6309    Online ISSN: 2541-819X
English | Русский

Recent issue
Vol. 27, No 4 October - December 2025

Quantitative assessment of burns while flat grinding hardened parts made of steel 37Cr4 by abrasive wheels of different porosity

Issue No 1 (66) January - March 2015
Authors:

Soler Yakov Iosifovich ,
Kazimirov Denis ,
Nguyen Van Le ,
DOI: http://dx.doi.org/10.17212/1994-6309-2015-1-6-19
Abstract
A method for quantitative assessment of grinding burns is developed on the basis of digital technology. It is tested in conditions of pendulum grinding of hardened parts made of steel 37Khr4 by abrasive wheels of different porosity: 25AF46L10V5KF35 (i=1), 25AF46M12V5PO3 (i=2), EKE46K3V (i=3), 5A46L10VAX (i=4). Abrasive wheels with i=1;2 relate to high-porous wheels, while the abrasive wheels with i=3;4 are made of monocrystal carborundum and have standard porosity (producer – company Dorfner schleifmittelwerk (Germany)). To confirm the reliability of the proposed methodology for assessing burn marks a study of details microhardness is undertaken. In consideration of grinding stochastic character, statistical methods (particularly – rank): parametric and nonparametric are used to reduce the observations. They give opportunity to evaluate the reliability of decisions as well as the cuttability of wheels not only by the measures of position but by measures of dispersion. The second characteristic of the marginal frequency distribution is more important while grinding of critical parts on adapted machines with manual control for eliminating rejected probability. The statistical results have shown that in the infringements of homoscedasticity and normality of observations’ allocation, the parametric method reduced to dislodgement of measures of position and confidence intervals. A correlation between measures of position for percent burn content and microhardness is established. Tool 25AF46L10V5KF35 grinding with regime: vc = 35 m.s-1, sl = 7 m.min-1, sc = 1 mm.(d.s.)-1, t = 0.015 mm, z=0.15mm secures the greatest microhardness of parts made of steel 37Khr4 in the minimum burns. This investigation has shown that grinding parts by wheels  runs in the softening of their surfaces, but no re-hardening burn. The wheel i=2 with pore-forming ПО3 is probably used for decrease of rejected parts.
Keywords: grinding, burns, assessment, microhardness, statistic, mean, median, measure of position, digital technology
Soler Yakov Iosifovich
Ph.D. (Engineering), Associate Professor, National Research Irkutsk State Technical University,
solera@istu.irk.ru
Orcid:

Kazimirov Denis
Ph.D. (Engineering), Associate Professor, National Research Irkutsk State Technical University,
kazimirov@fromru.com
Orcid:

Nguyen Van Le
Ph.D. student, National Research Irkutsk State Technical University,
nhatle007@gmail.com
Orcid:

References
1. Rudometov Yu.I. Primenenie abrazivnykh instrumentov, propitannykh suspenziyami impregnatorov [Abrasive tools steeped in special suspensions]. STIN Russian Engineering Research, 2012, no. 11, pp. 34–37. (In Russian)

2. Maslov E.N. Teoriya shlifovaniya materialov [Theory of materials grinding]. Moscow, Mashinostroenie Publ., 1974. 320 p.

3. Lebedev V.G., Klimenko N.N., Al'-Adzheilat S.A. [The mechanism of formation of burns in the grinding of hardened steel parts]. Mizhvuzivs'kyj zbirnyk “Naukovi notatky” [Interuniversity collection "Scientific Notes"], 2013, iss. 40, pp. 141–143.

4. Al'-Adzheilat S.A., Lebedev V.G. Formirovanie prizhogov otpuska pri shlifovanii napravlyayushchikh tyazhelykh pressov krugami iz KNB [Formation burn marks when grinding rails heavy presses by abrasive wheels CBN]. Problemy tehniky – Scientific and Industrial Journal, 2007, no. 4, pp. 128–150.

5. Al'-Adzheilat S.A., Lebedev V.G. Energeticheskie usloviya obrazovaniya prizhogov zakalki pri shlifovanii napravlyayushchikh tyazhelykh pressov krugami KNB [Energy conditions for the formation of burn marks hardening when grinding rails heavy presses by abrasive wheels CBN]. Problemy tehniky – Problems Technology, 2008, no. 1, pp. 130–152.

6. Suslov A.G., Bez"yazychnyi V.F., Panfilov Yu.V., Bishutin S.G., Govorov I.V., Gorlenko A.O., Petreshin D.I., Sakalo V.I., S"yanov S.Yu., Tikhomirov V.P., Fedonin O.N., Fedorov V.P., Finatov D.N., Shcherbakov A.N. Inzheneriya poverkhnosti detalei [Surface engineering details]. Moscow, Mashinostroenie Publ., 2008. 318 p.

7. El'yanov V.D., Kulikov V.N. Prizhogi pri shlifovanii [Grinding burn marks]. Moscow, NIImash Publ., 1974. 64 p.

8. ANSI/AGMA 2007-B92. Surface temper etch inspection after grinding, 1992. 14 p.

9. Medvedev M.N., Mel'nikova E.N. Sposob vyyavleniya prizhogov na metallakh, naprimer na titane i ego splavakh, i veshchestvo dlya ego osushchestvleniya [A method of detecting burn marks on metals, such as titanium and its alloys, and a substance for its realization]. Patent RF, no. 2044302, 1995.

10. Kocharov E.A., Oleshko V.S. Nerazrushayushchii sposob ekspressnogo vyyavleniya zon na poverkhnosti metallicheskikh detalei so shlifovochnymi ili ekspluatatsionnymi prizhogami [Non-destructive method of express identify areas on the surface of metal parts with grinding or operating burn marks]. Patent RF, no. 2407996, 2010.

11. Geller Yu.A. Instrumental'nye stali [Tool steels]. 5th ed. Moscow, Metallurgiya Publ., 1983. 527 p.

12. Suominen L. Obnaruzhenie defektov shlifovaniya detalei iz ferro-magnitnykh materialov s ispol'zovaniem effekta Barkgauzena [Detecting grinding damage in gears with the Barkhausen noise]. V mire nerazrushayushchego kontrolya – In the world of non-destructive testing, 2011, no. 2 (52), pp. 74–78.

13. Shaw B.A., Evans J.T., Wojtas A.S., Suominen L. Grinding process control using the magnetic Barkhausen noise method. Electromagnetic nondestructive evaluation (II). Proceedings of the 3rd International Workshop on E'NDE, Reggio Calabria, Italy, September 1997, Amsterdam, IOS Press, 1998, pp. 82–91.

14. Pal'tseva Yu.A., Baboshkin A.F. Metodika polucheniya trekhmernoi modeli sherokhovatoi poverkhnosti [Technique to obtain 3D model of a rough surface]. Instrument i tekhnologii – Tools and Technology, 2006, no. 23, iss. 1, pp. 135–140.

15. Arzamasov B.N., Solov'eva T.V., Gerasimov S.A. et al. Spravochnik po konstruktsionnym materialam [Handbook of Structural Materials]. Moscow, Bauman MSTU Publ., 2006. 640 p.

16. Soler Ya.I., Kazimirov D.Yu. Podkhody k otsenke opornoi chasti poverkhnosti shlifovannykh ploskostei titanovykh detalei abrazivnymi krugami Norton [Principles for the estimation of a bearing area of polished planes of titanium parts by abrasive wheels Norton]. Fundamental'nye i prikladnye problemy tekhniki i tekhnologii – Fundamental and Applied Problems of Engineering and Technology, 2014, no. 5 (307), pp. 142–150.

17. Soler Ya.I., Lgalov V.V. Izuchenie mikrotverdosti formoobrazuyushchikh detalei shtampovoi osnastki pri abrazivnom shlifovanii [Study of shaping die tooling parts microhardness under abrasive grinding]. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta – Bulletin of Irkutsk State Technical University, 2012, no. 7 (66), pp. 48–54.

18. Sachs L. Statistische auswertungsmethoden. Berlin, New York, Springer-Verlag, Heidelberg, 1972. 548 p. (Russ. ed.: Zaks L. Statisticheskoe otsenivanie. Trans. eng. Varygina V.N. Edited by Adler Yu.P., Gorskii V.G. Moscow, Statistika Publ., 1976. 598 p.).

19. Hollander M., Wolfe D.A. Nonparametric statistical methods. New York, John Wiley & Sons, 1973. 528 p. (Russ. ed.: Khollender M., Vulf D. Neparametricheskie metody statistiki. Trans. eng. Shmerling D.S. Edited by Adler Yu.P., Tiurin Yu.N. Moscow, Finansy i statistika Publ., 1983. 518 p.).

20. GOST R ISO 5725–2–2002. Tochnost' (pravil'nost' i pretsizionnost') metodov i rezul'tatov izmerenii. Ch. 2. Osnovnoi metod opredeleniya povtoryaemosti vosproizvodimosti standartnogo metoda izmerenii [Accuracy (trueness and precision) of measurement methods and results. Pt. 2. Basic method for the determination of repeatability and reproducibility of a standard measurement method]. Moscow, Standartinform Publ., 2002. 58 p.

21. Soler Ya.I., Nguyen V.L., Gutsol I.A. Prognozirovanie mikrogeometrii pri mayatnikovom shlifovanii ploskikh detalei iz stali 13Kh15N4AM3 vysokoporistymi instrumentami [Prediction of microgeometry in pendulous grinding of plane parts made of steel 13Х15Н4АМ3 by high porous wheels]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) – Metal Working and Material Science, 2014, no. 2 (63), pp. 21–30.

22. Soler Ya.I., Nguyen V.L., Gutsol I.A. Statisticheskie podkhody k mikrorel'efu ploskikh detalei iz zakalennoi stali 08Kh15N5D2T pri mayatnikovom shlifovanii vysokoporistymi krugami iz kubicheskogo nitrida bora i sinterkorunda [Statistical approaches to microrelief of flat parts made of hardened steel 08Х15НД2Т under pendulous grinding by high porous wheels made from cubic boron nitride and synthesis corundum]. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta – Bulletin of Irkutsk State Technical University, 2014, no. 4 (87), pp. 33–40.

23. Soler Ya.I., Kazimirov D.Yu., Prokop’eva A.V. Optimizing the grinding of high-speed steel by wheels of cubic boron nitride. Russian Engineering Research, 2007, vol. 27, iss. 12, pp. 916–919. doi: 10.3103/S1068798X07120180

24. Nosenko V.A., Nosenko S.V. Tekhnologiya shlifovaniya metallov: monografiya [Metal grinding technology]. Stary Oskol, TNT Publ., 2013. 616 p.

25. Starkov V.K. Shlifovanie vysokoporistymi krugami [Highly porous grinding wheels]. Moscow, Mashinostroenie Publ., 2007. 688 p.
Просмотров аннотации: 2169
Скачиваний полного текста: 3584
Просмотров интерактивной версии: 0