Obrabotka metallov

OBRABOTKA METALLOV

METAL WORKING AND MATERIAL SCIENCE
Print ISSN: 1994-6309    Online ISSN: 2541-819X
English | Русский

Recent issue
Vol. 27, No 3 July – September 2025

Influence of rolling and heat treatment on the structure and properties of the coatings fabricated on the titanium substrates by electron beam cladding

Issue No 2 (67) April - June 2015
Authors:

Samoylenko V. V.,
Lazurenko D.V.,
Polyakov I.A.,
Ruktuev A.A.,
Lenivtseva O.G.,
Lozhkin V.S.
DOI: http://dx.doi.org/10.17212/1994-6309-2015-2-55-63
Abstract
The influence of rolling and annealing on the structure and properties of VT1-0 titanium with cladded tantalum–containing coatings is estimated. It was found that electron beam treatment contributes to the formation of coatings characterized by the presence of dendritic segregation which is not neutralized by subsequent technological processes. However, the structural investigations revealed that annealing of the rolled material induces transformation of the quenched needlelike structure to the stable one, which is represented by equlaxial grains and lamination.

A microhardness level of titanium surface layers after electron beam treatment increased from 165 to 385 HV. Rolling and annealing had no significant effect on the hardness of cladded layers, but they had an impact on hardness of the titanium substrate. Ultimate tensile strength of titanium workpieces after electron beam treatment was approximately equal to tensile strength of commercially pure (cp) titanium (about 420 MPa). Rolling of the composites led to workhardening of the titanium plate and increase of strength up to 610 MPa which was subsequently reduced to about 450 MPa by annealing. Plasticity of investigated materials was lower than plasticity of cp-titanium after all kinds of treatment. Electron beam cladding also induced decreasing the titanium impact strength level to 55 J/cm2, which decreased to a greater extent (to 40 J/cm2) after rolling. However, subsequent annealing eliminated the negative effect of technological processes on impact strength of the material and contributed to its increase up to approximately 100 J/cm2.
Keywords: electron beam cladding, tantalum, titanium, coating, corrosion resistance.

References
1. Talbot D., Talbot J. Corrosion science and technology. Boca Raton, Florida, CRC Press, 1998. 390 p. ISBN 0-8493-8224-6

2. Shreir L.L., Jarman R.A., Burstein G.T., eds. Corrosion. Vol. 1: Metal/Environment Reactions. 3rd ed. London, Butterworth-Heinemann Publ., 2000. 1432 p. ISBN 0-7506-1077-8

3. Uhlig H.H., ed. The corrosion handbook. New York, John Wiley & Sons Publ., 1948. 1188 p.

4. Raj B., Mudali U.K. Materials development and corrosion problems in nuclear fuel reprocessing plants. Progress in Nuclear Energy, 2006, vol. 48, iss. 4, pp. 283–313. doi: 10.1016/j.pnucene.2005.07.001

5. De Souza K.A., Robin A. Influence of concentration and temperature on the corrosion behavior of titanium, titanium-20 and 40% tantalum alloys and tantalum in sulfuric acid solutions. Materials Chemistry and Physics, 2007, vol. 103, iss. 2–3, pp. 351–360. doi: 10.1016/j.matchemphys.2007.02.026

6. Guo D., Yang Y., Wu J., Zhao B., Zhao H., Su H., Lu Y. Structure of the oxide film on Ti–6Ta alloy after immersion test in8 mol/L boiling nitric acid medium. Journal of Electron Spectroscopy and Related Phenomena, 2013, vol. 189, pp. 122–126. doi: 10.1016/j.elspec.2013.08.013

7. Zhou Y.L., Niinomi M., Akahori T., Fukui H., Toda H. Corrosion resistance and biocompatibility of Ti-Ta alloys for biomedical applications. Materials Science and Engineering: A, 2005, vol. 398, iss. 1–2, pp. 28–36. doi: 10.1016/j.msea.2005.03.032

8. Shankar A.R., Dayal R.K., Balasubramaniam R., Raju V.R., Mythili R., Saroja S., Vijayalakshmi M., Raghunathan V.S. Effect of heat treatment on the corrosion behavior of Ti-5Ta–1.8Nb alloy in boiling concentrated nitric acid. Journal of Nuclear Materials, 2008, vol. 372, iss. 2–3, pp. 277–284. doi: 10.1016/j.jnucmat.2007.03.216

9. Sano Y., Takeuchi M., Nakajima Y., Hirano H., Uchiyama G., Nojima Y., Fu-jine S., Matsumoto S. Effect of metal ions in a heated nitric acid solution on the corrosion behavior of a titanium-5% tantalum alloy in the hot acid condensate. Journal of Nuclear Materials, 2013, vol. 432, iss. 1–3, pp. 475–481. doi: 10.1016/j.jnucmat.2012.08.009

10. Yamamoto T., Tsukui S., Okamoto S., Nagai T., Takeuchi M., Takeda S., Tanaka Y. Gamma-ray irradiation effect on corrosion rates of stainless steel, Ti and Ti-5Ta in boiling 9N nitric acid. Journal of Nuclear Materials, 1996, vol. 228, iss. 2, pp. 162–167. doi: 10.1016/S0022-3115(95)00227-8

11. De Souza K.A., Robin A. Preparation and characterization of Ti-Ta alloys for application in corrosive media. Materials Letters, 2003, vol. 57, iss. 20, pp. 3010–3016. doi: 10.1016/S0167-577X(02)01422-2

12. Golkovski M.G., Bataev I.A., Bataev A.A., Ruktuev A.A., Zhuravina T.V., Kuksanov N.K., Salimov R.A., Bataev V.A. Atmospheric electron-beam surface alloying of titanium with tantalum. Materials Science and Engineering: A, 2013, vol. 578, pp. 310–317. doi: 10.1016/j.msea.2013.04.103

13. Bataev I.A., Bataev A.A., Golkovsky M.G. Teplykh A. Yu., Burov V.G., Veselov S.V. Non-vacuum electron-beam boriding of low-carbon steel. Surface and Coatings Technology, 2012, vol. 207, pp. 245–253. doi: 10.1016/j.surfcoat.2012.06.081

14. Galitskii B.A., Abelev M.M., Shvarts G.L., Shevelkin B.N. Titan i ego splavy v khimicheskom mashinostroenii [Titanium and its alloys in chemical engineering]. Moscow, Mashinostroenie Publ., 1968. 340 p.

15. Bataev I.A., Zhuravina T.V., Ruktuev A.A., Lenivtseva O.G., Romashova Yu.N. Strukturnye issledovaniya pokrytii sistemy «titan-tantal», poluchennykh metodom vnevakuumnoi elektronno-luchevoi naplavki [Structural investigation of “titanium-tantalum” coatings obtained by non-vacuum electron beam cladding]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) – Metal Working and Material Science, 2012, no. 3 (56), pp. 56–59.

16. Golkovskii M.G., Samoilenko V.V., Popelyukh A.I., Ruktuev A.A., Plotnikova N.V., Belousova N.S. Mnogosloinaya elektronno-luchevaya naplavka tantalsoderzhashchikh poroshkovykh smesei na zagotovki iz titana VT1-0 [Multilayered electron-beam overlay welding of the tantalum-containing powder mixtures on the commercial pure titanium]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) – Metal Working and Material Science, 2013, no. 4 (61), pp. 43–48.

17. Golovanenko S.A., Meandrov L.V. Proizvodstvo bimetallov [Bimetal production]. Moscow, Metallurgiya Publ., 1966. 153 p.

18. Cotton J.D., Bingert J.F., Dunn P.S. Microstructure and mechanical properties of Ti-40 Wt Pct Ta (Ti-15 At. Pct Ta). Metallurgucal and Materials Transactions A, 1994, vol. 25, iss. 3, pp. 461–472. doi: 10.1007/BF02651588

19. Zhuravina T.V., Bataev I.A., Ruktuev A.A., Alkhimov A.P., Lenivtseva O.G., Butylenkova O.A. Vnevakuumnaya elektronno-luchevaya naplavka poroshkov sistemy titan-tantal-niobii na titan VT1-0 [Non-vacuum electron beam cladding of titanium, tantalum and niobium powders on titanium substrate]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) – Metal Working and Material Science, 2012, no. 1 (54), pp. 90–95.
Views: 3503