When creating modern systems of automatic control of various processes and objects operating in real time, very often one has to face the problem of solving various kinds of nonlinear scalar equations. Currently, there are a number of computational methods and algorithms for its solution, one of which is the dichotomy method. This method has a number of advantages in comparison with other known methods for solving nonlinear equations, but at present it has not found wide practical use. The main reason for its low popularity is the low rate of convergence of the sequence of approximate solutions and a large amount of computation required to obtain sufficiently accurate solutions. The purpose of the study is to consider in detail distinctive features of the dichotomy method and show the preference of its use in comparison with other known methods. We propose a modified version of the dichotomy method that allows one to obtain more rapidly converging sequences of approximate solutions to nonlinear scalar equations and requires significantly fewer computations required to obtain solutions with the desired accuracy. By solving a number of specific nonlinear equations, it is possible to illustrate the higher convergence rate of the sequence of approximate solutions calculated using the modified dichotomy method and, thereby, to substantiate the advantage of the new method for its use in creating various automatic control and regulation systems. Based on the results obtained a modification of the method for segment bisection is proposed. It has all the main advantages of the modified method. The research results can be used in the development of modern automatic control systems for various technological processes and objects.
1. Demidovich B.P., Maron I.A. Osnovy vychislitel'noi matematiki [Fundamentals of computational mathematics]. Moscow, Fizmatgiz Publ., 1963. 660 p.
2. Mudrov A.E. Chislennye metody dlya PEVM na yazykakh Beisik, Fortran i Paskal' [Numerical methods for PCs in BASIC, Fortran and Pascal]. Tomsk, Rasko Publ., 1991. 270 p.
3. Hamming R.W. Numerical methods for scientists and engineers. New York, McGraw-Hill, 1962 (Russ. ed.: Khemming R.V. Chislennye metody: dlya nauchnykh rabotnikov i inzhenerov. 2nd ed. Moscow, Nauka Publ., 1972. 400 p.).
4. Forsythe G.E., Malcolm M.A., Moler C.B. Computer methods for mathematical computations. Englewood Cliffs, NJ, Prentice-Hall, 1977 (Russ. ed.: Forsait Dzh., Mal'kol'm M., Mouler K. Moscow, Mir Publ., 1980. 280 p.).
5. Danilina N.I., Dubrovskaya N.S., Kvasha O.P. Chislennye metody [Numerical methods]. Moscow, Vysshaya shkola Publ., 1976. 368 p.
6. Fichtenholz G.M. Kurs differentsial'nogo i integral'nogo ischisleniya. T. 1 [The course of differential and integral calculus. Vol. 1]. Moscow, Nauka Publ., 1970. 608 p.
7. Karelin A.E., Maistrenko A.V., Svetlakov A.A., Kharitonov S.A. Sintez metoda avtomaticheskogo regulirovaniya protsessov, osnovannogo na kontseptsii obratnykh zadach dinamiki [Synthesis of the method of automatic control of processes based on the concept of inverse problems of dynamics]. Omskii nauchnyi vestnik = Omsk Scientific Bulletin, 2017, no. 4 (154), pp. 83–87.
8. Maistrenko A.V. Eksperimental'nye issledovaniya metoda avtomaticheskogo regulirovaniya protsessov, osnovannogo na kontseptsii obratnykh zadach dinamiki [Experimental researches of the method of automatic regulation of processes based on the concept of reverse dynamics problems]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Elektrotekhnika, informatsionnye tekhnologii, sistemy upravleniya = Perm National Research Bulletin. Electrotechnics, Informational Technologies, Control Systems, 2018, no. 27, pp. 176–194.
9. Maistrenko A.V., Svetlakov A.A. Kosvennoe izmerenie raskhoda zhidkosti perekachivaemoi nasosnymi agregatami [The indirect measurement of oil flow rate, delivered with a pump unit]. Doklady Tomskogo gosudarstvennogo universiteta sistem upravleniya i radioelektroniki = Proceedings of TUSUR University, 2014, no. 4 (34), pp. 215–220.
10. Maistrenko A.V., Svetlakov A.A., Starovoitov N.V. Tsifrovoe differentsirovanie izmeryaemykh signalov s primeneniem integral'nykh uravnenii V. Vol'terra i ego regulyarizatsiya [Digital differentiation of measured signals using V. Volterra integral equations and its regularization]. Omskii nauchnyi vestnik = Omsk Scientific Bulletin, 2013, no. 2 (120), pp. 308–313.
11. Traub J.F. Iterative methods for the solution of equations. New York, Chelsea, 1982 (Russ. ed.: Traub Dzh. Iteratsionnye metody resheniya uravnenii. Moscow, Mir Publ., 1985. 264 p.).
12. Tikhonov A.N., Arsenin V.Ya. Metody resheniya nekorrektnykh zadach [Methods for solving incorrect problems]. 2nd ed. Мoscow, Nauka Publ., 1979. 286 p.
13. Maistrenko A.V., Svetlakov A.A., Starovoitov N.V. Tsifrovoe differentsirovanie signalov na osnove skol'zyashchei kvadratichnoi approksimatsii i ego primenenie v sinteze PID-regulyatorov [Digital signal differentiation based on sliding quadratic approximation and its application in the synthesis of PID controllers]. Omskii nauchnyi vestnik = Omsk Scientific Bulletin, 2016, no. 1 (145), pp. 73–77.
14. Maistrenko A.V., Svetlakov A.A., Starovoitov N.V. Tsifrovoe differentsirovanie signalov s primeneniem mnogotochechnykh metodov v sistemakh avtomaticheskogo regulirovaniya protsessov [Digital signal differentiation using multipoint methods in automatic process control systems]. Doklady Tomskogo gosudarstvennogo universiteta sistem upravleniya i radioelektroniki = Proceedings of TUSUR University, 2009, no. 2 (20), pp. 86–89.
15. Rabiner L., Gold B. Theory and application of digital signal processing. Englewood Cliffs, NJ, Prentice-Hall, 1975 (Russ. ed.: Rabiner L., Gould B. Teoriya i primenenie tsifrovoi obrabotki signalov, Moscow, Mir Publ., 1978. 848 p.).
Maistrenko A.V., Maistrenko K.A., Svetlakov A.A. Dikhotomiya. Dikhotomiya? Dikhotomiya!: osnovnye polozheniya, problemy terminologii i inspektsionnyi analiz metoda dikhotomii [Dichotomy. Dichotomy? Dichotomy! Basic provisions, problems of terminology and inspection analysis of the method of dichotomy]. Nauchnyi vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta = Science bulletin of the Novosibirsk state technical university, 2020, no. 4 (80), pp. 93–110.