Analysis and data processing systems

ANALYSIS AND DATA PROCESSING SYSTEMS

Print ISSN: 2782-2001          Online ISSN: 2782-215X
English | Русский

Recent issue
№2(98) April - June 2025

Polynomial matrix method for synthesizing regulators for objects with a control signal delay

Issue No 1 (89) January - March 2023
Authors:

Voevoda Alexander A.,
Filiushov Vladislav Yu.
DOI: http://dx.doi.org/10.17212/2782-2001-2023-1-7-24
Abstract

In this paper, we consider the synthesis of control systems for objects with a control signal delay by a polynomial matrix method, which is used to locate the poles and, if possible, zeros in the required position. The controller is calculated from the output, i.e. only from the measured values in the plant, which is an advantage over other modal direction synthesis methods where a state vector must be used. It is proposed to approximate the delay link with a Padé series with a limited number of terms, thus obtaining transfer functions of the first and second orders. The desired characteristic polynomial of the closed system is chosen so that it contains the denominators of the approximation transfer functions, which will keep their poles in the closed system.



The polynomial synthesis method makes it possible to calculate multichannel controllers both for objects with multiple inputs and multiple outputs (multi input - multi output, MIMO) and for objects with one input and several outputs (single input - multi output, SIMO). The latter include a DC motor with independent excitation, where the armature current and rotor speed are outputs, and the control signal applied to the semiconductor converter is the input. In this work, the control signal is formed with a delay exceeding the time of the transient process of the engine, which significantly affects its dynamics. By applying the proposed approach, it was possible to synthesize a rotor speed control system that is resistant to changes in the delay time in a fairly wide range.


Keywords: polynomial synthesis method, polynomial matrix decomposition, synthesis, multichannel controller, electromechanical system, transport delay, Pade approximation

References

1. Mitroshin V.N., Lojko A.Yu., Sazonov D.O., Filippova E.V. Sistema avtomaticheskogo regulirovaniya temperaturnogo raspredeleniya rasplava polimera v zone dozirovaniya odnochervyachnogo ekstrudera [Automatic control system for the temperature distribution of the polymer melt in the dosing zone of a single-screw extruder]. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Tekhnicheskie nauki = Bulletin of the Samara State Technical University. Series: Engineering sciences, 2007, no. 1 (19), pp. 35–40.



2. Rudobashta S.P., Zueva G.A. Matematicheskoe modelirovanie protsessa sushki materiala v apparate s psevdoozhizhennym sloem [Mathematical modeling of the material drying in the apparatus with fluidized bed]. Matematicheskie metody v tekhnike i tekhnologiyakh – MMTT = Mathematical Methods in Technique and Technologies – MMTT, 2019, vol. 8, pp. 77–80.



3. Sarma K.L.N., Chidambaram M. Centralized PI/PID controllers for non-square systems with RHP zeros. Journal of the Indian Institute of Science, 2005, vol. 85 (4), pp. 201–214.



4Qibing J., Yan G., Ziyi L., Anan S. Decoupling internal model control for non-square process with time delays // International Conference on Measuring Technology and Mechatronics Automation. IEEE, 2010, pp. 898–901. DOI: 10.1109/ICMTMA.2010.133.



5. Guretskii Kh. Analiz i sintez sistem upravleniya s zapazdyvaniem [Analysis and synthesis of control systems with transport delay]. Moscow, Mashinostroenie Publ., 1974. 327 p.



6. Prasolov A.V. Dinamicheskie modeli s zapazdyvaniem i ikh prilozheniya v ekonomike i inzhenerii [Dynamic Models with Delay and Their Applications in Economics and Engineering]. St. Petersburg, Lan' Publ., 2010. 192 p.



7. Tyutikov V.V., Tararykin S.V. Robastnoe modal'noe upravlenie tekhnologicheskimi ob"ektami [Robust modal control of plant objects]. Ivanovo, Ivanovo State Energetical University Publ., 2006. 255 p.



8. Tararykin S.V., Tyutikov V.V. Robust model control for dynamic systems. Automation and Remote Control, 2002, vol. 63 (5), pp. 730–742. Translated from Avtomatika i telemekhanika, 2002, no. 5, pp. 41–55.



9. Voevoda A.A., Chekhonadskikh A.V., Shoba E.V. Modal'nyi metod sinteza s ispol'zovaniem polinomial'nogo razlozheniya: razdelenie dvizhenii pri stabilizatsii trekhmassovoi sistemy [Modal synthesis method using a polynomial decomposition: the separation of motions in the stabilization of the three-mass plant]. Nauchnyi vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta = Science bulletin of the Novosibirsk state technical university, 2011, no. 2 (43), pp. 39–46.



10. Shoba E.V. Modal'nyi metod sinteza mnogokanal'nykh dinamicheskikh sistem s ispol'zovaniem polinomial'nogo razlozheniya. Diss. kand. tekhn. nauk [The modal method for the synthesis of multi-channel dynamic systems using a polynomial expansion. PhD eng. sci. diss.]. Novosibirsk, 2013. 192 p.



11. Voronoi V.V. Polinomial'nyi metod rascheta mnogokanal'nykh regulyatorov ponizhennogo poryadka. Diss. kand. tekhn. nauk [Design of multi-channel reduced degree controllers. PhD eng. sci. diss.]. Novosibirsk, 2013. 173 p.



12. Voevoda A.A., Filiushov V.Yu., Shipagin V.I. Polinomial'nyi metod sinteza regulyatorov dlya chastnogo sluchaya mnogokanal'nykh ob"ektov s odnoi vkhodnoi peremennoi I neskol'kimi vykhodnymi [Polynomial method for the synthesis of regulators for the special case of multichannel objects with one input variable and several output values]. Bezopasnost' tsifrovykh tekhnologii = Digital Technology Security, 2021, no. 3 (102), pp. 21–42. DOI: 10.17212/2782-2230-2021-3-21-42.



13. Voevoda A.A., Filyushov V.Yu. Mnogokonturnaya sistema podchinennogo regulirovaniya v mnogokanal'nom nekvadratnom predstavlenii [Multiloop subordinate control system in the non-square multivariable representation]. Vestnik Ryazanskogo gosudarstvennogo radiotekhnicheskogo universiteta = Vestnik of Ryazan State Radio Engineering University, 2021, no. 2 (76), pp. 90–101.



14. Voevoda A.A., Filiushov V.Yu., Bobobekov K.M. Polynomial matrix and multiloop control methods synthesis comparation for a DC Drive // 2021 International Russian Automation Conference (RusAutoCon), Sochi, Russian Federation, 2021, pp. 917–923.



15. Voevoda A.A., Filiushov V.Yu. Polinomial'noe matrichnoe razlozhenie pri sinteze nekvad-ratnykh SAU [Polynomial matrix decomposition for the synthesis of non-square control systems]. Sistemy analiza i obrabotki dannykh = Analysis and Data Processing Systems, 2021, no. 1 (81), pp. 21–38.



16. Filiushov V.Yu. Polinomial'nyj metod sinteza regulyatorov po zadayushchemu i vozmushchayushchim vozdejstviyam [Polynomial synthesis method of regulators to reference and disturbance signals]// Sistemi analiza I orabotki dannih – Systems of Analysis and Data Processing. – 2022. – № 1 (85). – С. 93–108 pp.



17. Gaiduk A.R. Teoriya i metody analiticheskogo sinteza sistem avtomaticheskogo upravleniya (polinomial'nyi podkhod) [The theory and methods of analytical synthesis of automatic control systems (polynomial approach)]. Moscow, Fizmatlit Publ., 2012. 360 p.



18. Chen C.T. Linear system theory and design. 2nd ed. New York, Oxford University Press, 1999. 334 p.



19. Vidyasagar M. Control system synthesis: a factorization approach. Pt. 1. San Rafael, CA, Morgan and Claypool Publ., 2011. 184 p.



20. Vidyasagar M. Control system synthesis: a factorization approach. Pt. 2. San Rafael, CA, Morgan and Claypool Publ., 2011. 227 p.



21. Antsaklis P.J., Michael A.N. Linear systems. New York, McGraw-Hill, 1997. 670 p.

For citation:

Voevoda A.A., Filiushov V.Yu. Polinomial'nyi matrichnyi metod sinteza regulyatorov dlya ob"ektov s zapazdyvaniem upravlyayushchego signala [Polynomial matrix method for synthesizing regulators for objects with a control signal delay]. Sistemy analiza i obrabotki dannykh = Analysis and Data Processing Systems, 2023, no. 1 (89), pp. 7–24. DOI: 10.17212/2782-2001-2023-1-7-24.

Views: 972