Digital technology security

DIGITAL TECHNOLOGY SECURITY

DIGITAL
TECHNOLOGY SECURITY

English | Русский

Recent issue
№4(119) October - December 2025

Sorting neural network

Issue No 4 (86) October - December 2016
Authors:

K.A. Cherdantsev ,
A.V. Klad'ko ,
DOI: http://dx.doi.org/10.17212/2307-6879-2016-4-104-113
Abstract
The applicationofmicrocontrollers is becoming increasingly widespread in various areas of information processing. Actual questions on the implementation of various algorithms, the development of software, is encountered in an increasing number of papers. Some algorithms are fairly simple, but require careful software development. But there are more complex algorithms, that should simulate the functioning, for example, of neural networks and Petri nets. In this paper, we show the sequence of designing a device that, at the first sight, is not complex but which requires careful study. The study outlines the progress of the project to create an LED matrix for displaying any information.
Keywords: Neural networks, algorithms, experiment, sorting, multilayer neural network, single layer neural network, numeric arrays, evaluation algorithms, programming
K.A. Cherdantsev
Novosibirsk State Technical University, 20 Karl Marks Avenue, Novosibirsk, 630073, Russian Federation, doctor of Technical Sciences, professor of the automation department. E-mail:
medmene@yandex.ru
Orcid:

A.V. Klad'ko
Novosibirsk State Technical University, 20 Karl Marks Avenue, Novosibirsk, 630073, Russian Federation, candidate of Technical Sciences, associate professor of the automation department. E-mail:
tonkladko@ya.ru
Orcid:

References
1. Voevoda A.A., Romannikov D.O., Zimaev I.V. Primenenie UML diagramm i setei Petri pri razrabotke vstraivaemogo programmnogo obespecheniya [An approach to the using UML and Petri nets for embedded software designing]. Nauchnyi vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta – Science bulletin of the Novosibirsk state technical university, 2009, no. 4, pp. 169–174.

2. Voevoda A.A., Romannikov D.O. Redutsirovanie prostranstva sostoyanii setei Petri dlya ob"ektov odnogo klassa [Reducing the state space of Petri nets for objects of one class]. Nauchnyi vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta – Science bulletin of the Novosibirsk state technical university, 2011, no. 4, pp. 136–139.

3. Korotikov S.V., Voevoda A.A. Primenenie setei Petri v razrabotke pro-grammnogo obespecheniya tsentrov distantsionnogo upravleniya i kontrolya [Using Petri nets in software development of remote monitoring and control center]. Nauchnyi vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universitetaScience bulletin of the Novosibirsk state technical university, 2007, no. 4, pp. 15–32.

4. Voevoda A.A., Romannikov D.O. O kompaktnom predstavlenii yazykov raskrashennykh setei Petri [On the compact representation of the languages of colored Petri nets]. Sbornik nauchnykh trudov Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta – Transaction of scientific papers of the Novosibirsk state technical university, 2008, no. 3 (53), pp. 105–108.

5. Voevoda A.A., Markov A.V., Romannikov D.O. Razrabotka programmnogo obespecheniya: proektirovanie s ispol'zovaniem UML diagramm i setei Petri na primere ASU TP vodonapornoi stantsii [Software development: software design using UML diagrams and Petri nets for example automated process control system of pumping station]. Trudy SPIIRAN – SPIIRAS proceedings, 2014, iss. 3 (34), pp. 218–231.

6. Voevoda A.A., Markov A.V. Rekursiya v setyakh Petri [The concepts recursion in Petri nets]. Sbornik nauchnykh trudov Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta – Transaction of scientific papers of the Novosibirsk state technical university, 2012, no. 3 (69), pp. 115–122.

7. Markov A.V., Voevoda A.A. Razvitie sistemy "peremeshchenie manipulyatora v prostranstve s prepyatstviyami" pri pomoshchi rekursivnykh funktsii [Development of the system "moving the manipulator in the obstacle space" with the help of recursive functions]. Avtomatika i programmnaya inzheneriya – Automatics & Software Enginery, 2013, no. 2 (4), pp. 35–41.

8. Capannini G., Silvestri F., Baraglia R. Sorting on GPUs for large scale datasets: a thorough comparison. Information Processing and Management, 2011, vol. 48 (5), pp. 903–917.

9. Galushkin A.I. Neironnye seti. Osnovy teorii [Neural network. Base theory]. Moscow, Hotline-Telecom Publ., 2010. 496 p.

10. Callan R. The essence of neural networks. London, Prentice Hall Europe, 1999 (Russ. ed.: Kallan R. Osnovnye kontseptsii neironnykh setei. Moscow, Vil'yams Publ., 2001. 291 p.).

11. Barskii A.B. Neironnye seti: raspoznavanie, upravlenie, prinyatie reshenii [Neural network: recognition, control, accept solutions]. Moscow, Finansy i statistika Publ., 2004. 176 p.

12. Haykin S. Neural networks. Upple Saddle River, Prentice Hall, 1999 (Russ. ed.: Khaikin S. Neironnye seti. Polnyi kurs. Moscow, Vil'yams Publ., 2006. 1104 p.).

13. Medvedev V.S., Potemkin V.G. Neironnye seti [Neural network]. Moscow, Dialog-MIFI Publ., 2002. 496 p.

14. Yakh"yaeva G.E. Nechetkie mnozhestva i neironnye seti [Fuzzy sets and neural networks]. Moscow, Binom Publ., 2006. 374 p.

15. Komashinskii V.I., Smirnov D.A. Neironnye seti i ikh primenenie v sistemakh upravleniya svyazi [Neural networks. Using in communications system]. Moscow, Hotline-Telecom Publ., 2003. 94 p.
Просмотров аннотации: 1828
Скачиваний полного текста: 2379
Просмотров интерактивной версии: 0