Obrabotka metallov

OBRABOTKA METALLOV

METAL WORKING AND MATERIAL SCIENCE
Print ISSN: 1994-6309    Online ISSN: 2541-819X
English | Русский

Recent issue
Vol. 27, No 2 April - June 2025

Synthesis of the drive mechanism of the continuous production machine

Vol. 25, No 1 January - March 2023
Authors:

Podgornyj Yuriy,
Kirillov Alexander,
Skeeba Vadim,
Martynova Tatyana,
Lobanov Dmitry,
Martyushev Nikita
DOI: http://dx.doi.org/10.17212/1994-6309-2023-25.1-71-84
Abstract

Introduction. Existing mixing devices operate at a constant angular velocity of the working body. During this process, there are zones in which there may be no movement of material, which leads to a decrease in the quality of the finished product. When the working body moves with a variable angular rate, the inertia forces, when changing its sign, contribute to the creation of conditions under which the mixture will lose contact with the blade and move to new levels of movement, and this helps to improve the quality and intensity of the mixing process. The purpose of the work is to improve the quality of the processed mixture on horizontal blade (kneading) machine. Methods. Theoretical studies are carried out using the basic provisions of the theory of machines and mechanisms, structural and parametric synthesis, kinematic analysis, mathematical and computer simulation. Results and discussion. In accordance with the proposed method, the synthesis of the cam-rocker mechanism is carried out, which made it possible to select the main dimensions for the cam mechanism: the minimum radius and center distance. For the synthesis of the rocker group, the parameters of the synthesized cam mechanism are used and, using the main parameters for the rocker group (the size of the input link, the angle of the second arm initial position and rocker centre line, equal to 90°). The rocker arm span angle is obtained equal to 103°. As a result of the kinematic calculation, it is found that the dwell time of the working shafts is within 80°. The quality of the mixture can be assessed by the angle of the stagnation zone, which is formed during the movement of granular material. Under static conditions, it is equal to 0.846°, and at variable angular rate — 0.550°. It is theoretically confirmed that inertial forces that change sign four times in one cycle will provide shaking and rebound of the mixed mass from the blades, which, in turn, will significantly improve the quality of the mixture.


Keywords: Type synthesis of a mechanism, Assur groups, Parametric synthesis of a mechanism, Kinematic scheme, Cam-rocker mechanism, Kinematic parameters, Friction ratio, Friction angle

References

1. Chen K., Wang M., Huo X., Wang P., Sun T. Topology and dimension synchronous optimization design of 5-DoF parallel robots for in-situ machining of large-scale steel components. Mechanism and Machine Theory, 2023, vol. 179, p. 105105. DOI: 10.1016/j.mechmachtheory.2022.105105.



2. Flores P., Souto A.P., Marques F. The first fifty years of the Mechanism and Machine Theory: Standing back and looking forward. Mechanism and Machine Theory, 2018, vol. 125, pp. 8–20. DOI: 10.1016/j.mechmachtheory.2017.11.017.



3. Hsieh J.-F. Design and analysis of indexing cam mechanism with parallel axes. Mechanism and Machine Theory, 2014, vol. 81, pp. 155–165. DOI: 10.1016/j.mechmachtheory.2014.07.004.



4. Eckhardt H.D. Kinematic design of machines and mechanisms. 1st еd. New York, McGraw-Hill, 1998. 620 p. ISBN 0070189536. ISBN 978-0070189539.



5. Zhu B., Zhang X., Zhang H., Liang J., Zang H., Li H., Wang R. Design of compliant mechanisms using continuum topology optimization: a review. Mechanism and Machine Theory, 2012, vol. 143, p. 103622. DOI: 10.1016/j.mechmachtheory.2019.103622.



6. Erdman A.G., Sandor G.N. Mechanism design: analysis and synthesis. 4th ed. Upper Saddle River, NJ, Pearson, 2001. 688 p. ISBN 0130408727. ISBN 978-0130408723.



7. Mudrov A.G. Konstruktsii i model' smesheniya v apparatakh s meshalkoi [Design and model mixing in the apparatus with stirrer]. Izvestiya Kazanskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta = News of the Kazan State University of Architecture and Engineering, 2018, no. 1, pp. 226–233.



8. Demin O.V. [Analysis of the operation of various types of mixers for bulk materials of periodic action]. Trudy TGTU: sbornik nauchnykh statei molodykh uchenykh i studentov [Proceedings of TSTU: Collection of scientific articles of young scientists and students]. Tambov, 2001, iss. 8, pp. 109–114.



9. Tsertsvadze G.V., Zaldastanishvili N.K., Natsvlishvili Z.S. Testomesil'naya mashina [Dough mixer]. Inventor's Certificate USSR, no. 1253560, 1986.



10. Podgornyj J.I., Martynova T.G., Vojnova E.V. Testomesil'naya mashina nepreryvnogo deistviya [Continuous action dough kneading machine]. Patent RF, no. 2455826, 2012.



11. Podgornyi I.I., Kirillov A.V., Skeeba V.Iu., Martynova T.G., Ogorodnikov V.A. Testomesil'naya mashina nepreryvnogo deistviya [Continuous kneading machine]. Patent RF, no. 2752158, 2021.



12. Perez A., McCarthy J.M. Dimensional synthesis of Bennett linkages. ASME. Journal of Mechanical Design, 2003, vol. 125, iss. 1, pp. 98–104. DOI: 10.1115/1.1539507.



13. Myszka D.H. Machines and mechanisms: applied kinematic analysis. 4th ed. Pearson, 2012. 576 p. ISBN 0-13-215780-2. ISBN 978-0-13-215780-3.



14. Rao J.S., Dukkipati R.V. Mechanism and machine theory. 2nd ed. New Delhi, New Age International, 2008. 600 p. ISBN 812240426X. ISBN 978-8122404265.



15. Youssef H.A., El-Hofy H. Machining technology: machine tools and operations. Hoboken, Taylor & Francis Group, 2008. 672 p. ISBN 9781420043396.



16. Shabana A.A. Dynamic of multibody systems. 4th ed. Cambridge, Cambridge University Press, 2013. 393 p. ISBN 978-1107042650. ISBN 1107042658.



17. Kolovsky M.Z., Evgrafov A.N., Semenov Yu.A., Slousch A.V. Advanced theory of mechanisms and machines. 1st ed. Berlin, Heidelberg, Springer, 2000. 396 p. Foundations of Engineering Mechanics. ISBN 978-3-642-53672-4. eISBN 978-3-540-46516-4. DOI: 10.1007/978-3-540-46516-4.



18. Astashev V.K., Babitsky V.I., Kolovsky M.Z. Dynamics and control of machines. 1st ed. Berlin, Heidelberg, Springer, 2000. 235 p. ISBN 978-3-642-53698-4. eISBN 978-3-540-69634-6. DOI: 10.1007/978-3-540-69634-6.



19. Artobolevskii I.I. Teoriya mekhanizmov i mashin [Theory of mechanisms and machines]. 4th ed. Moscow, Nauka Publ., 1988. 640 p. ISBN 5-02-013810-X.



20. Hendrickson C.T., Janson B.N. A common network flow formulation for several civil engineering problems. Civil Engineering Systems, 1984, vol. 1, iss. 4, pp. 195–203. DOI: 10.1080/02630258408970343.



21. Battarra M., Mucchi E. Analytical determination of the vane radial loads in balanced vane pumps. Mechanism and Machine Theory, 2020, vol. 154, p. 104037. DOI: 10.1016/j.mechmachtheory.2020.104037.



22. Neugebauera R., Denkena B., Wegener K. Mechatronic systems for machine tools. CIRP Annals, 2007, vol. 56, iss. 2, pp. 657–686. DOI: 10.1016/j.cirp.2007.10.007.



23. Novotný P., Jonák M., Vacula J. Evolutionary optimisation of the thrust bearing considering multiple operating conditions in turbomachinery. International Journal of Mechanical Sciences, 2021, vol. 195, p. 106240. DOI: 10.1016/j.ijmecsci.2020.106240.



24. Kaipio T., Smelov L., Morgan C., Leighton N. A practical approach to motion control for varying inertia systems. Progress in system and robot analysis and control design. Ed. by S.G. Tzafestas, G. Schmidt. London, Springer, 1999, pp. 195–204. DOI: 10.1007/BFb0110545.



25. Rothbart H.A. Cam design handbook. New York, McGraw-Hill Professional, 2003. 606 p. ISBN 0071377573. ISBN 978-0875841830.



26. Podgornyj Yu.I., Skeeba V.Yu., Kirillov A.V., Maksimchuk O.V., Skeeba P.Yu. Proektirovanie kulachkovogo mekhanizma s uchetom tekhnologicheskoi nagruzki i energeticheskikh zatrat [Cam mechanism designing with account of the technological load and energy costs]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2017, no. 2, pp. 17–27. DOI: 10.17212/1994-6309-2017-2-17-27.



27. Podgornyj Yu.I., Kirillov A.V., Ivancivsky V.V., Lobanov D.V., Maksimchuk О.V. Sintez zakona dvizheniya mekhanizma priboya utochnykh nitei stanka STB s privodom ot kulachkov [Synthesis of the motion law of filling threads beat-up mechanisms of the STB loom with cam driven]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2019, vol. 21, no. 4, pp. 47–58. DOI: 10.17212/1994-6309-2019-21.4-47-58.



28. Podgornyj Yu.I., Martynova T.G., Skeeba V.Yu. K voprosu ob ogranichenii neravnomernosti dvizheniya tekhnologicheskoi mashiny v zadannykh predelakh [On the issue of limiting the irregular motion of a technological machine within specifed limits]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2022, vol. 24, no. 2, pp. 67–77. DOI: 10.17212/1994-6309-2022-24.2-67-77.



29. Vulfson I. Dynamics of cyclic machines. Cham, Springer International, 2015. 390 p. Foundations of Engineering Mechanics. ISBN 978-3-319-12633-3. eISBN 978-3-319-12634-0. DOI: 10.1007/978-3-319-12634-0.



30. Ondrášek J. The synthesis of a hook drive cam mechanism. Procedia Engineering, 2014, vol. 92, pp. 320–329. DOI: 10.1016/j.proeng.2014.12.129.



31. Mott R.L. Machine elements in mechanical design. 5th ed. Upper Saddle River, NJ, Pearson, 2013. 816 p. ISBN 0135077931. ISBN 978-0135077931.



32. Zhou C., Hu B., Chen S., Mac L. Design and analysis of high-speed cam mechanism using Fourier series. Mechanism and Machine Theory, 2016, vol. 104, pp. 118–129. DOI: 10.1016/j.mechmachtheory.2016.05.009.



33. Kodnyanko V., Shatokhin S., Kurzakov A., Pikalov Y. Theoretical analysis of compliance and dynamics quality of a lightly loaded aerostatic journal bearing with elastic orifices. Precision Engineering, 2021, vol. 68, pp. 72–81. DOI: 10.1016/j.precisioneng.2020.11.012.



34. Xu L.X., Chen B.K., Li C.Y. Dynamic modelling and contact analysis of bearing-cycloid-pinwheel transmission mechanisms used in joint rotate vector reducers. Mechanism and Machine Theory, 2019, vol. 137, pp. 432–458. DOI: 10.1016/j.mechmachtheory.2019.03.035.



35. Zhang T., Li X., Wang Y., Sun L. A semi-analytical load distribution model for cycloid drives with tooth profile and longitudinal modifications. Applied Sciences, 2020, vol. 10, iss. 14, p. 4859. DOI: 10.3390/app10144859.



36. Stocki R., Szolc T., Tauzowski P., Knabel J. Robust design optimization of the vibrating rotor-shaft system subjected to selected dynamic constraints. Mechanical Systems and Signal Processing, 2012, vol. 29, pp. 34–44. DOI: 10.1016/j.ymssp.2011.07.023.



37. Fomin A., Paramonov M. Synthesis of the four-bar double-constraint mechanisms by the application of the Grubler's method. Procedia Engineering, 2016, vol. 150, pp. 871–877. DOI: 10.1016/j.proeng.2016.07.034.



38. Fomin A., Dvornikov L., Paramonov M., Jahr A. To the theory of mechanisms subfamilies. IOP Conference Series: Materials Science and Engineering, 2016, vol. 124, p. 012055. DOI: 10.1088/1757-899X/124/1/012055.



39. Podgornyj Yu.I., Martynova T.G., Skeeba V.Yu., Lobanov D.V., Martyushev N.V. Algorithm for determining the unbalances of continuous mixers rotors. Journal of Physics: Conference Series, 2021, vol. 1061, p. 012071. DOI: 10.1088/1742-6596/2061/1/012071.



40. Pershin V.F., Pas'ko A.A., Demin O.V. Modelirovanie dvizheniya plastiny v sypuchem materiale [Modeling of plate movement in the granular material]. Vestnik Tambovskogo gosudarstvennogo tekhnicheskogo universiteta = Transactions of the Tambov State Technical University, 2002, vol. 8, no. 3, pp. 444–449.

Acknowledgements. Funding

Funding

This study was supported by a NSTU grant (project No. TP-PTM-1_23).

 

Acknowledgements

Research were conducted at core facility “Structure, mechanical and physical properties of materials”.

For citation:

Podgornyj Yu.I., Kirillov A.V., Skeeba V.Yu., Martynova T.G., Lobanov d.V., Martyushev N.V. Synthesis of the drive mechanism of the continuous production machine. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2023, vol. 25, no. 1, pp. 71–84. DOI: 10.17212/1994-6309-2023-25.1-71-84. (In Russian).

Views: 1076